陳海真,宋宏鵬
(山東理工大學(xué),山東淄博 255049)
3-CRC并聯(lián)機(jī)構(gòu)構(gòu)型變異與性能分析
陳海真,宋宏鵬
(山東理工大學(xué),山東淄博 255049)
通過(guò)改變已有3-CRC并聯(lián)機(jī)構(gòu)運(yùn)動(dòng)支鏈的配置方式,得到了一類(lèi)運(yùn)動(dòng)完全解耦的新型三平移并聯(lián)機(jī)構(gòu),并導(dǎo)出了機(jī)構(gòu)的位置正反解方程。利用機(jī)構(gòu)的完全解耦性與位置方程導(dǎo)出了機(jī)構(gòu)工作空間的解析表達(dá)式,并對(duì)兩類(lèi)機(jī)構(gòu)的解耦性能與工作空間進(jìn)行了對(duì)比,驗(yàn)證了新機(jī)構(gòu)優(yōu)良的運(yùn)動(dòng)性能,為其后續(xù)的研究和應(yīng)用提供了依據(jù)。
并聯(lián)機(jī)構(gòu);機(jī)構(gòu)構(gòu)型;位置正、反解;解耦;工作空間
運(yùn)動(dòng)解耦、工作空間體積大的少自由度并聯(lián)機(jī)構(gòu)具有優(yōu)良的運(yùn)動(dòng)性能,實(shí)用價(jià)值較高,具有廣泛的應(yīng)用前景[1-2]。運(yùn)動(dòng)解耦性與并聯(lián)機(jī)構(gòu)的結(jié)構(gòu)形式有著密切的關(guān)系,其位置分析相對(duì)也比較復(fù)雜,工作空間的求解受到多種因素的影響,較難得到一個(gè)精確的解析解。目前多數(shù)是利用數(shù)值方法對(duì)工作空間求近似解,少數(shù)機(jī)構(gòu)可以根據(jù)其特定的結(jié)構(gòu)形式和位置方程得到解析解[3]。為了更好地推廣應(yīng)用少自由度并聯(lián)機(jī)構(gòu),通過(guò)對(duì)其拓?fù)浣Y(jié)構(gòu)進(jìn)行分析,尋求運(yùn)動(dòng)解耦性優(yōu)良、工作空間體積大的結(jié)構(gòu)形式尤其重要。
圖1所示為文獻(xiàn) [4]中提出的3-CRC并聯(lián)機(jī)構(gòu)。動(dòng)平臺(tái)的運(yùn)動(dòng)輸出矩陣是3條CRC支鏈的運(yùn)動(dòng)輸出矩陣的交集,通過(guò)改變3條運(yùn)動(dòng)支鏈的布置方式可以得到其他形式的3-CRC并聯(lián)機(jī)構(gòu)。將3條支鏈的驅(qū)動(dòng)副由三角形分布改為正方形分布,可以得到圖2所示的3種類(lèi)型的3-CRC并聯(lián)機(jī)構(gòu)。

圖2 第二類(lèi)3-CRC并聯(lián)機(jī)構(gòu)簡(jiǎn)圖

圖1 第一類(lèi)3-CRC并聯(lián)機(jī)構(gòu)簡(jiǎn)圖

各條支路運(yùn)動(dòng)輸出矩陣的交集為并聯(lián)機(jī)構(gòu)的運(yùn)動(dòng)輸出矩陣[5]。

式中:Mpa為并聯(lián)機(jī)構(gòu)動(dòng)平臺(tái)的運(yùn)動(dòng)輸出矩陣;
M1i為第i條支路的運(yùn)動(dòng)輸出矩陣。
據(jù)上式,可得圖2中的3類(lèi)機(jī)構(gòu)的運(yùn)動(dòng)輸出矩陣。
對(duì)于圖2(a)所示的機(jī)構(gòu),其運(yùn)動(dòng)輸出矩陣:

對(duì)于圖2(b)所示的機(jī)構(gòu),其運(yùn)動(dòng)輸出矩陣:

對(duì)于圖2(c)所示的機(jī)構(gòu),其運(yùn)動(dòng)輸出矩陣:

由式(1)、(2)、(3)可見(jiàn),新機(jī)構(gòu)(a)、(b)在輸出特征上滿足預(yù)期要求,機(jī)構(gòu) (c)的自由度發(fā)生了變化,增加了一個(gè)繞空間y軸的轉(zhuǎn)動(dòng)自由度,且機(jī)構(gòu)在y方向的移動(dòng)失去了運(yùn)動(dòng)輸入的約束,因此該類(lèi)機(jī)構(gòu)不再具備三平移的運(yùn)動(dòng)特征。
圖1所示3-CRC1并聯(lián)機(jī)構(gòu)的位置正解、反解方程[4]分別為

對(duì)圖2(a)所示3-CRC2機(jī)構(gòu),建立如圖所示坐標(biāo)系。支鏈A1B1C1的輸入角θ1沿Y軸負(fù)向逆時(shí)針為正,支鏈A2B2C2的輸入角θ2取沿Y軸正向逆時(shí)針為正,支鏈A3B3C3的輸入角θ3則沿Z軸正向順時(shí)針為正。桿A1B1、A2B2、A30B3的長(zhǎng)度均為l1,B1B10、B2B20、B30C30的長(zhǎng)度分別是l2、l3、l4。由圖可知點(diǎn)P坐標(biāo) (xp,yp,zp)即為動(dòng)平臺(tái)在定坐標(biāo)系O-XYZ中的位置坐標(biāo)。據(jù)矢量關(guān)系

可得以下方程

由上述三式可得該機(jī)構(gòu)的位置正解、反解方程分別為

對(duì)比、兩式和對(duì)圖2(a)的分析可以看出,圖2(b)所示機(jī)構(gòu)具有完全相同的解,且機(jī)構(gòu)的位置解僅與三條支鏈的桿長(zhǎng)有關(guān),不受上下平臺(tái)尺寸的影響,因此圖2(a)、2(b)所示兩機(jī)構(gòu)在進(jìn)行位置和工作空間分析時(shí)可歸為一類(lèi) (但在動(dòng)力學(xué)和靜剛度性能上兩機(jī)構(gòu)會(huì)有差別)。
下面根據(jù)并聯(lián)機(jī)構(gòu)輸入輸出組解耦的定義[6]依據(jù)位置正解方程,分析兩類(lèi)機(jī)構(gòu)的解耦特性。將兩類(lèi)機(jī)構(gòu)的輸入、輸出分別用向量θ=(θ1θ2θ3)T、X= (xpypzp)T表示。并聯(lián)機(jī)構(gòu)3-CRC1,由式可知輸出組X中的xp與輸入組θ中的θ1、θ3有關(guān),而yp只與θ1有關(guān),zp僅與θ2有關(guān),所以該機(jī)構(gòu)屬于輸入輸出部分組解耦。
并聯(lián)機(jī)構(gòu)3-CRC2,由式可知輸出組X中的不同元素都唯一地對(duì)應(yīng)輸入組θ中的一個(gè)元素,該機(jī)構(gòu)輸入輸出完全解耦,比3-CRC1機(jī)構(gòu)具有更好的運(yùn)動(dòng)學(xué)性能。將式兩端分別對(duì)時(shí)間求導(dǎo)得機(jī)構(gòu)輸入與輸出速度向量之間的關(guān)系式,即運(yùn)動(dòng)Jacobian矩陣


桿長(zhǎng)、運(yùn)動(dòng)副轉(zhuǎn)角的限制以及連桿的運(yùn)動(dòng)干涉等[7]是影響并聯(lián)機(jī)構(gòu)工作空間大小的主要因素。影響3-CRC并聯(lián)機(jī)構(gòu)工作空間的主要結(jié)構(gòu)參數(shù)是C副的移動(dòng)行程和轉(zhuǎn)動(dòng)副的轉(zhuǎn)角行程。據(jù)這兩類(lèi)3-CRC并聯(lián)機(jī)構(gòu)的特點(diǎn),若滿足C副移動(dòng)行程的約束條件,轉(zhuǎn)動(dòng)副的轉(zhuǎn)角約束條件自然滿足。下平臺(tái)3個(gè)支鏈C副的移動(dòng)距離用si(i=1、2、3)表示,上平臺(tái)3個(gè)支鏈C副的移動(dòng)距離則用di(i=1、2、3)表示,兩類(lèi)機(jī)構(gòu)的C副移動(dòng)行程約束條件表式如下:

根據(jù)機(jī)構(gòu)的結(jié)構(gòu)特點(diǎn)和幾何關(guān)系可以得出3-CRC1并聯(lián)機(jī)構(gòu),上下平臺(tái)各支鏈C副的位移表達(dá)式

式中:z0為點(diǎn)P z方向的初始坐標(biāo),θ20、θ30分別為2、3支鏈驅(qū)動(dòng)副的初始位置角。
對(duì)于并聯(lián)機(jī)構(gòu)3-CRC2,上下平臺(tái)各支鏈C副的位移表達(dá)式

式中:x0、y0、z0為點(diǎn)P的初始坐標(biāo)。
大部分并聯(lián)機(jī)構(gòu)由于其工作空間是不規(guī)則的空間幾何體,無(wú)法求出其精確的解析解,只能借助軟件近似模擬工作空間的形狀,并用數(shù)值方法求出其體積的近似解。
據(jù)前面的分析知3-CRC2并聯(lián)機(jī)構(gòu)完全解耦,位置解方程簡(jiǎn)單,可以根據(jù)其位置正解方程,并綜合考慮影響工作空間大小的約束條件,求出以點(diǎn)P為參考點(diǎn)的動(dòng)平臺(tái)工作空間的集合表達(dá)式。據(jù)式 (6)、(8)、(9)、(12)及(13)可以求出3-CRC2并聯(lián)機(jī)構(gòu)工作空間的集合表達(dá)式

由式 (14)可以得出工作空間的體積為(2l1)3或(cmax-cmin)3,據(jù)具體機(jī)構(gòu)的結(jié)構(gòu)參數(shù)取兩者計(jì)算結(jié)果的小值。按表1中所給的3-CRC2并聯(lián)機(jī)構(gòu)的結(jié)構(gòu)參數(shù),可得工作空間的體積理論值為2.7×107mm3。
用極坐標(biāo)搜索法可求兩類(lèi)機(jī)構(gòu)工作空間的數(shù)值解。據(jù)3-CRC并聯(lián)機(jī)構(gòu)的位置反解方程可求解工作空間。把驅(qū)動(dòng)桿的轉(zhuǎn)角θ1、θ2、θ3及C副的位移si、di用動(dòng)平臺(tái)點(diǎn)P的位置坐標(biāo) (xp,yp,zp)表示出來(lái),若機(jī)構(gòu)符合各種約束條件,該位置點(diǎn)在工作空間內(nèi),否則在工作空間外。利用MATLAB編制邊界搜索程序,可得兩類(lèi)機(jī)構(gòu)的相關(guān)結(jié)構(gòu)參數(shù)及工作空間體積值,見(jiàn)表1。圖3為兩類(lèi)機(jī)構(gòu)的工作空間三維立體圖。

表1 機(jī)構(gòu)結(jié)構(gòu)參數(shù)與工作空間體積
由表1對(duì)比發(fā)現(xiàn),3-CRC2并聯(lián)機(jī)構(gòu)工作空間體積數(shù)值計(jì)算結(jié)果為2.689 6×107mm3,與理論值的誤差是0.386 5%,證明了工作空間解析解的正確性。
由圖3可以看出兩類(lèi)機(jī)構(gòu)的工作空間,3-CRC1的工作空間形狀復(fù)雜,其邊界存在很多尖角,尖角區(qū)域機(jī)構(gòu)工作性能較差,而3-CRC2的工作空間外形是規(guī)則的立方體,而且在整體尺寸相同的情況下工作空間體積值增加了1.681倍,明顯地改善了其工作性能。

圖3 工作空間三維立體圖
并聯(lián)機(jī)構(gòu)具有復(fù)雜多樣的拓?fù)浣Y(jié)構(gòu),且運(yùn)動(dòng)支鏈配置方式的不同往往會(huì)引起機(jī)構(gòu)運(yùn)動(dòng)特性的巨大改變。通過(guò)對(duì)3-CRC機(jī)型進(jìn)行構(gòu)型變異和分析,得到了具有更加優(yōu)良運(yùn)動(dòng)性能的機(jī)型,新機(jī)構(gòu)位置正反解方程簡(jiǎn)單、運(yùn)動(dòng)完全解耦,機(jī)構(gòu)的控制方案簡(jiǎn)單,且工作空間體積得到了成倍的提高。研究結(jié)果對(duì)該類(lèi)機(jī)構(gòu)的實(shí)際應(yīng)用具有重要意義。
[1]黃真,李秦川.少自由度并聯(lián)機(jī)器人機(jī)構(gòu)的型綜合原理[J].中國(guó)科學(xué)(E輯),2003,33(9):813-819.
[2]張彥斌,吳鑫,劉宏昭.一種新型3-CRP移動(dòng)并聯(lián)機(jī)構(gòu)的設(shè)計(jì)和運(yùn)動(dòng)分析[J].中國(guó)機(jī)械工程,2008,19(4): 435-438.
[3]LI H D,GOSSELIN C M,MARC J R,et al.Analytic Form of the Six-Dimensional Singularity Locus of the General Gough-Stewart Platform[C].Proc.ASME DETC 2004/ MECH-57135,2004b,Salt Lake City,Utah,USA.
[4]鄒忠月,陳海真,宋宏鵬.新型3-CRC并聯(lián)機(jī)構(gòu)結(jié)構(gòu)及運(yùn)動(dòng)解耦分析[J].山東理工大學(xué)學(xué)報(bào):自然科學(xué)版,2009,23(1):29-32.
[5]楊廷力.機(jī)器人機(jī)構(gòu)拓?fù)浣Y(jié)構(gòu)學(xué)[M].北京:機(jī)械工業(yè)出版社,2004.
[6]宮金良,張彥斐,高峰.并聯(lián)機(jī)構(gòu)的解耦特性[J].中國(guó)機(jī)械工程,2006,17(14):1509-1512.
[7]MASORY O,WANG J.On the Accuracy of a Stewart Platform-Part II Kinematic Calibration and Compensation[C].Proc.IEEE Conf.on Rob.1993,Aut,725-731.
Variations in Configuration and Performance Analysis of 3-CRC Parallel Mechanism
CHEN Haizhen,SONG Hongpeng
(Shandong University of Technology,Zibo Shandong 255049,China)
A new type of parallel mechanism with three-dimensional(3D)translations and movement complete decoupling was generated by changing the configuration form of the movement branched-chains of the original 3-CRC parallel mechanism,and the positional forward and inverse solution equations were derived.The analytical expression of workspace of mechanism was derived from using the complete decoupling and positional equations of the mechanism,and the decoupling performance and workspace of two types of mechanisms were compared.The excellent kinematics performance of the new mechanisms is verified,which provides a basis for further application and study.
Parallel mechanism;Mechanism configuration;Positional forward and inverse solution;Decoupling;Workspace
TH112
A
1001-3881(2014)9-021-4
10.3969/j.issn.1001-3881.2014.09.006
2013-04-22
山東省自然科學(xué)基金資助項(xiàng)目 (Y2006G17)
陳海真 (1963—),女,碩士,副教授,研究方向?yàn)闄C(jī)構(gòu)學(xué)與創(chuàng)新設(shè)計(jì)。E-mail:chhaizhen@163.com。