,,2,, , ,
(1.西南電力設計院,四川 成都 610021;2.西南交通大學電氣工程學院,四川 成都 610031)
系統等值到換流站交流母線的阻抗頻率特性反映了交流母線上背景諧波的分布特征[1],是確保實現換流站交流濾波器方案合理配置、保證無功補償與控制方案優化設計的重要基礎條件。在電力系統諧波阻抗測量領域,利用現代信號處理技術對電壓電流信號進行分析以計算系統諧波阻抗的方法得到了較為深入地研究[2-6]。但在實際直流工程進行交流濾波器設計時,一般采用相關工具軟件進行系統的諧波阻抗特性研究。目前比較常用的諧波阻抗等值工具主要有ABB 公司的SIMPOW 程序和加拿大Teshmont 公司的NIMSCAN 程序[7]。NIMSCAN程序由于其數據與國內廣泛使用的PSD-BPA數據結構相似,所以在中國的直流工程換流站濾波器設計中得到了較為廣泛的應用,目前NIMSCAN程序已被應用于中國多條已投運和在建的直流工程[7-9]。
觀音巖電站送出直流是南方電網異步聯網工程的重要組成部分。根據規劃,云桂交流斷面硯山至靖西500 kV線路將“π”接接入觀音巖直流受端換流站,實現云南電網與南方主網異步聯網,以降低南方電網運行風險。相對于其他直流工程,觀音巖電站送出直流存在運行方式較多、受端換流站接入弱交流系統、換流站出線裝設串補等特點。因此,不同于其他直流的系統諧波阻抗計算,在進行觀音巖電站送出直流的換流站交流濾波器設計時,有必要針對本直流工程的運行方式及特點,對其送受端換流站的系統諧波阻抗等值特性進行更為詳細地研究。
基于工程實際情況,分析觀音巖電站送出直流可能出現的運行方式與特點,并針對工程特點,采用NIMSCAN工具,進行系統諧波阻抗特性的比較研究。
觀音巖電站位于金沙江中游河段,裝機規模5×600 MW,電站計劃于2015年12月底前5臺機組陸續投產完畢。觀音巖電站電能的消納方案是近期全部送電廣西,遠期需兼顧云南省負荷發展的需要。為滿足電能消納方案要求,擬通過建設1回±500 kV/3 000 MW直流,實現電站電力的送出。電站送出直流起點位于云南省永仁縣,落點位于云南省富寧縣。
根據電站消納方案的要求,觀音巖電站送出直流的送電方向有廣西桂西地區和云南滇南地區,對應可能存在的主要有以下3種運行方式
1)直流雙極接入廣西電網,電力全送廣西;
2)直流雙極接入云南電網,電力全送云南;
3)直流分極接入廣西電網和云南電網,分極送電。

圖1 觀音巖電站送出直流示意圖
觀音巖電站送出直流工程送受端換流站接入系統示意圖如圖1所示。由圖可知,送端換流站通過兩回線路與云南主網相連,存在孤島運行的可能。而受端換流站落點的交流系統較弱,需在換流站出口線路加裝串補,以提高換流母線短路比,改善換流站運行條件。目前受端換流站至靖西線路的串補度暫按50%進行相關的研究,最終的補償度正在進行進一步的分析論證。
綜上分析可知,觀音巖電站送出直流的特點主要有以下3點。
1)直流送端存在聯網和孤島運行的可能;
2)直流受端可能存在的運行方式較多,分極送電時需接入兩個同步電網;
3)受端換流站落點交流系統較弱,換流站出口線路裝設串補。
將通過NIMSCAN程序對觀音巖電站送出直流的送受端換流站諧波阻抗特性進行分析,主要研究內容有以下2點。
1)送端:對換流站聯網運行和孤島運行時的系統諧波阻抗等值分別進行研究分析;
2)受端:根據送電方向的不同分別研究南方主網和云南電網等值到受端換流站的系統阻抗參數,并針對線路串補度存在變化的可能,對不同串補度下系統諧波阻抗參數的變化進行分析。
1)發電機
在NIMSCAN程序中,發電機可視為一個等值阻抗的電壓源,發電機的諧波阻抗模型為

2)變壓器
在NIMSCAN程序中,變壓器的諧波阻抗模型為
其中,RT(nf)為nf次諧波下變壓器的電阻;RT(f0)為基頻下變壓器電阻。
3) 線路
NIMSCAN程序中,輸電線路采用類似基頻下常規的“π”型模型,并采用雙曲函數校正。
4)負荷的諧波阻抗模型
NIMSCAN程序將負荷節點的負荷折算為對應電壓下的阻抗再進行計算,具體模型為
式中,nf為諧波次數;g(nf)為nf次諧波下負荷電導;b(nf)為nf次諧波下負荷電納;P0為有功負荷;Q0為無功負荷;U為節點電壓。
5)特殊物理原件模型
特殊物理元件等值采用電阻、電抗、電容數據來表征系統中某些物理元件。該模型的等值電路如圖2所示。

圖2 特殊物理原件模型等值電路
諧波阻抗等值掃描流程如圖2所示。整個過程可主要分為以下4步。
1)BPA數據準備:對BPA潮流數據和穩定數據進行預處理。主要涉及內容有冗余數據刪減、BPA數據卡片轉化等。
2)NIM數據生成:將BPA數據轉化為NIM文件。
3)諧波阻抗計算:采用諧波阻抗掃描程序對生成的NIM文件進行諧波阻抗等值掃描。
4)結果收集:按照需求統計收集諧波阻抗計算結果。

圖3 諧波阻抗掃描流程圖
影響系統諧波阻抗的主要因素有近區電網開機、負荷水平和電網結構。選擇運行方式時應盡可能體現各因素對諧波阻抗變化趨勢的影響。下面研究以觀音巖電站送出直流工程投產的2016年為水平年,并考慮電源、負荷、電網結構的發展變化,對2017年和2020年的諧波阻抗也進行校核計算。以2016年豐大、豐小、枯大、枯小方式,2017年豐大、豐小、枯大、枯小方式和2020年豐大、枯大方式為基礎運行方式,并在每一種運行方式下考慮送受端換流站近區網絡發生“N-1”故障情況,對觀音巖電站送受端換流站分別進行諧波阻抗特性研究。
直流換流站聯網運行和孤島運行時,直流換流站網絡結構變化較大,所以對換流站聯網和孤島運行時的諧波阻抗分別進行研究。
1)換流站聯網運行方式諧波阻抗等值
送端換流站聯網運行時,對上述各水平年不同運行方式(考慮近區網絡“N-1”)進行諧波阻抗掃描計算,統計得到系統諧波阻抗扇形圖參數列于表1。

表1 送端換交流側系統諧波阻抗扇形圖參數(聯網運行)(1 p.u.= 2 756.25 Ω)
2)換流站孤島運行方式諧波阻抗等值
孤島方式下,運行方式考慮觀音巖電站到換流站全接線與N-1。諧波阻抗等值計算結果如表2所示。
通過計算結果可見,換流站孤島運行時系統的諧波阻抗特性與聯網運行時差異較大,孤島運行時各次諧波的阻抗扇形面積普遍增大,系統諧波阻抗特性較差,對換流站濾波器設計要求較高。
根據直流可能存在的運行方式,分別按送電廣西(南方主網系統等值到換流站母線)和送電云南(云南電網等值到換流站母線),分別進行諧波阻抗特性分析。根據受端換流站的初步研究成果,換流站至靖西線路串補目前暫按50%的串補度進行相關研究,最終的串補度需待進一步比較分析,所以先按換流站至靖西線路串補度為50%時進行諧波阻抗等值研究,再對換流站出線不同串補度時系統的諧波阻抗參數變化進行分析。

表2 送端換交流側系統諧波阻抗扇形圖參數(孤島運行)(1 p.u.= 2 756.25 Ω)
1)送電廣西時系統諧波阻抗特性
各水平年各種方式下,考慮近區網絡“N-1”時受端換流站諧波阻抗如表3所示。

表3 受端換交流側系統諧波阻抗扇形圖參數(送電廣西)(1 p.u.= 2 756.25 Ω)
2)送電云南時系統諧波阻抗特性
送電云南方向時,考慮近區網絡“N-1”,云南電網等值到換流站母線的諧波阻抗特性如表4所示。

表4 受端換交流側系統諧波阻抗扇形圖參數(送電云南)(1 p.u.= 2 756.25 Ω)
3)換流站出線不同串補度對諧波阻抗特性的影響
由于換流站出線串補的最終補償度尚在進行研究論證,對換流站至靖西雙回線路在不同串補度下的系統等值諧波阻抗參數(最小阻抗幅值、最大阻抗幅值、最小阻抗角、最大阻抗角)進行比較,主要分析了換流站至靖西雙回線路串補度由50%降至30%和10%時的系統諧波阻抗參數變化情況。
換流站至靖西雙回線路不同串補度下系統等值諧波阻抗參數與50%串補度時的系統等值諧波阻抗參數之差分別如圖4至圖7所示。

圖4 各次諧波阻抗最小阻抗幅值差

圖5 各次諧波阻抗最大阻抗幅值差

圖6 各次諧波阻抗最小阻抗角

圖7 各次諧波阻抗最大阻抗角差
由圖4至圖7可知:
1)從數值上看,在大部分諧波次數下換流站至靖西雙回線路串補補償度對系統等值諧波阻抗參數的影響不大;當線路串補度變化時,對2次諧波阻抗的參數影響比其他各次諧波阻抗大;
2)線路串補補償度由50%變化為10%時,系統的諧波阻抗參數變化量大致是串補補償度由50%變化為30%時諧波阻抗參數變化量的2倍;
3)換流站至靖西雙回線路串補補償度的改變對各次諧波阻抗下的參數影響沒有明顯規律;
4)換流站至靖西雙回線路串補補償度由50%變化為30%和10%時對同次諧波的阻抗幅值影響相同,均表現為對該次諧波阻抗最小、最大幅值的增大或減小趨勢;
5)換流站至靖西雙回線路串補補償度減小時,各次諧波阻抗最小、最大阻抗角均呈增大趨勢。
觀音巖電站送出直流是南方電網異步聯網工程的重要組成部分,相對于其他直流工程,觀音巖電站送出直流運行方式較多。通過NIMSCAN程序對本直流不同運行方式下送受端換流站的系統諧波阻抗等值進行了研究,主要結論如下。
1)送端換流站孤島運行時系統諧波阻抗特性與聯網運行時差異大,對濾波器的要求較高,濾波器設計較困難;
2)為滿足電站電能的消納,受端換流站存在雙極接入廣西電網、雙極接入云南電網和分極接入廣西電網與云南電網的運行方式,需按照送電方向的不同分別對受端換流站的系統諧波阻抗進行等值研究;
3)換流站至靖西雙回線路串補補償度的改變對各次諧波阻抗下的參數影響沒有明顯規律。當串補度由50%分別降至30%和10%時,對大部分諧波次數下系統的諧波阻抗等值參數沒有較大影響。
[1] Hingorani N G, Burberry M F. Simulation of AC System Impedance in HVDC System Studies [J]. IEEE TransacTions on Power Apparatus and Systems, 1970, 89(5-6): 820-828.
[2] Sumner M, Palethorpe B, Thomas D.W.P, et al. A Technique for Power Supply Harmonic Impedance Estimation Using a Controlled Voltage Disturbance[J]. IEEE Transactions on Power Electronics, 2002, 17(2): 207-215.
[3] 呂洋, 徐政. 投切電容器時的電網諧波阻抗測量方法[J]. 高電壓技術, 2009, 35(7): 1780-1784.
[4] LV Yang, XU Zheng. Network Harmonic Impedance Measurement Using Capacitor Switching[J]. High Voltage Engineering, 2009, 35(7): 1780-1784.
[5] 王詩超, 沈沉, 程建洲. 考慮電流波動特性的系統側諧波阻抗估計方法[J]. 電力系統自動化, 2012, 36(3): 65-70.
[6] 張安安, 楊洪耕. 基于畸變波形同步分層估計諧波阻抗的探討[J]. 電力系統自動化, 2003, 27(9):41-44.
[7] 楊志棟, 李亞男, 殷威揚, 等. ±800 kV 向家壩—上海特高壓直流輸電工程諧波阻抗等值研究[J]. 電網技術, 2007, 31(18): 1-4.
[8] 吳曄, 殷威揚. 用于直流系統動態性能研究的等值計算[J]. 高電壓技術, 2004, 30(11): 18-20.
[9] 周保榮, 金小明, 吳小辰, 等. 糯扎渡直流送端普洱換流站孤島方式諧波阻抗計算研究.[J] 南方電網技術, 2010, 4(5): 24-26.