999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基底核中腺苷A2A受體和多巴胺D2受體調節睡眠-覺醒作用機制

2014-04-04 04:33:01汪慧菁曲衛敏黃志力
世界睡眠醫學雜志 2014年1期

汪慧菁 曲衛敏 黃志力

·基礎研究·

基底核中腺苷A2A受體和多巴胺D2受體調節睡眠-覺醒作用機制

汪慧菁 曲衛敏 黃志力

越來越多的研究關注基底核(basal ganglia,BG)對睡眠-覺醒的調節作用,其中紋狀體和蒼白球可能是控制睡眠和覺醒的關鍵結構。腺苷A2A受體與多巴胺D2受體在基底核中均高度共表達,特別是在紋狀體。腺苷是目前為止發現的最強的內源性促眠物質之一,可通過激活A1和A2A受體誘導睡眠。而多巴胺D2受體對于覺醒的維持有著重要作用。這些研究成果均提示基底核中A2A受體和D2受體調節睡眠-覺醒,腺苷作用于興奮性的A2A受體,增加伏隔核中抑制性GABA能神經元活性,抑制主要覺醒系統,促進睡眠;抑制性多巴胺D2受體系統則發揮了相反的作用。本文綜述基底核中腺苷A2A受體和多巴胺D2受體調節睡眠-覺醒機制。

基底核;睡眠-覺醒;腺苷A2A受體;多巴胺D2受體

人們對睡眠的認識是一個漫長的過程。研究發現哺乳動物腦內存在著睡眠和覺醒二大調節系統。睡眠調節系統包括:下丘腦腹外側視前區(Ventrolateral preoptic area,VLPO)神經叢、基底前腦及視前區GABA能神經元、基底神經節-大腦皮層-邊緣系統、腦干和丘腦的GABA能神經元、以及中腦控制快動眼(Rapid eye movement,REM)睡眠發生和維持的神經元等。主要覺醒神經元則有:腦干網狀結構、中縫核(Raphe nucleus,RN)的5-羥色胺能、藍斑(Locus coeruleus,LC)的去甲腎上腺素能、導水管周圍灰質的多巴胺能、腦橋-中腦乙酰膽堿能、基底前腦膽堿能和非膽堿能、下丘腦外側Orexin 能及后部結節乳頭核(Tuberomammillary nucleus,TMN)的組胺能神經元等。睡眠和覺醒是通過腦內多種神經遞質和內源性睡眠促進物質共同作用、相互影響而實現,受晝夜節律和內環境穩態的調控。

近年來,越來越多的研究表明,基底核(Basal ganglia,BG)在整合睡眠-覺醒行為中發揮重要作用。基底核是前腦中最大的結構,由4個主要核團組成,包括紋狀體、蒼白球(Globus pallidus,GP)、丘腦底核(Subthalamic nucleus,STN)和黑質(Substantia nigra,SN),與皮層、丘腦、杏仁核,以及中腦多巴胺能神經元都有著密集的纖維連接。其中,腹側紋狀體的組成部分—伏隔核,參與了運動、習慣養成、以及獎賞成癮行為。這些高級行為都依賴于覺醒,對我們生活有重大影響。因此,越來越多研究關注基底核在各種神經網絡功能整合中的作用。

1 基底核神經元在睡眠-覺醒周期中的電生理特征及調節作用

盡管基底核神經元的電生理活動模式已經得到了廣泛研究,但只有少數實驗嘗試在清醒動物上記錄睡眠-覺醒狀態時神經元的放電特征。研究提示:基底核中不同核團的神經元具有完全不同的放電模式。如紋狀體的主要細胞類型中有棘神經元(Medium spiny neurons,MSN),覺醒時表現為不規則放電,伴有短暫的無規律去極化反應。在慢波睡眠時,MSN放電活躍,膜電位在超極化靜止狀態和去極化狀態之間規律地波動變化[1]。與此相反,單細胞記錄顯示:蒼白球神經元在覺醒以及快動眼睡眠時的活性最大,這些神經元在覺醒和快動眼睡眠時比在慢波睡眠時放電更快[2]。傳統觀點認為,多巴胺并未直接參與睡眠的生理調節。因為人們在自由活動的貓上,發現黑質和腹側背蓋區的多巴胺能神經元平均放電頻率并不隨著睡眠-覺醒周期變化而改變[3-4]。但是,最近的研究改變了這一觀點。使用頭部固定的未麻醉大鼠的單神經元記錄發現,腹側背蓋區中的多巴胺能神經元在REM睡眠中表現出明顯的簇放電[5]。多巴胺受體激動劑則能改變丘腦底核的神經元放電[6]。

參與構成基底核的 4個主要核團在睡眠-覺醒的調節中有著不同的作用。例如,特異性損毀外側蒼白球細胞胞體可導致大鼠失眠,總覺醒量急劇增加(45%),Non-REM(NREM)睡眠和覺醒呈現明顯的片段化,包括睡眠時相轉換增多,睡眠時相持續時間變短等[7]。外側蒼白球含有直接皮層投射神經元,因此有假說認為背側紋狀體-蒼白球-皮層是背側紋狀體以及外側蒼白球調節睡眠-覺醒行為的可能通路,參與了調節睡眠-覺醒行為和皮層激活[8],其中尾狀核神經投射至外側蒼白球,繼而通過直接投射至大腦皮層。尾狀核、伏隔核和蒼白球

的損傷可導致大腦皮層腦電波普遍減慢,且在覺醒、REM睡眠和 NREM睡眠時,theta波減少,delta波增多。黑質神經元損失,也可使覺醒增加[7,9]。這些發現提示,從黑質到背側紋狀體的多巴胺能神經輸入的缺失,可能是導致帕金森病人失眠的原因之一。

2 基底核腺苷受體與多巴胺受體對睡眠-覺醒的整合調節

基底核可能在睡眠-覺醒周期的調節上發揮著重要作用。腺苷A1受體或A2A受體分別與多巴胺D1受體或D2受體在基底核中呈現高表達。多巴胺D1受體在紋狀體黑質神經元中與腺苷A1受體共存,A2A受體在基底核紋狀體蒼白球神經元中與 D2受體共表達。腺苷是目前發現的最強內源性促眠物質,可通過激活A1和A2A受體發揮促進睡眠[10-13]。腺苷通過作用于 A1受體,抑制紋狀體周圍覺醒相關細胞群,如布若卡氏區斜紋帶的水平支、無名質[14-15]和下丘腦外側的orexin神經元[16],從而誘導睡眠。A1受體介導的對睡眠覺醒調節作用呈現區域特異性。如激活結節乳頭核的A1受體,可抑制組胺能系統,促進NREM睡眠[17]。相反,激活下丘腦外側視前區的A1受體則促進覺醒[8]。大鼠全身給藥或腦室內給予A1受體激動劑N6-Cyclopentyladenosine(CPA)可劑量依賴地增加 NREM睡眠時的腦電圖慢波活動[19]。但如果僅將 A1受體激動劑 CPA灌流到小鼠的側腦室則并不改變NREM和REM睡眠量[20]。這些結果均提示腦內不同區域對睡眠和覺醒的作用可能是相反的。A1受體在尾狀核和蒼白球中大量表達[21],解剖學和藥理學證據顯示激活 A1受體可抑制多巴胺與 D1受體的結合[22-23]。但紋狀體中A1受體和D1受體對紋狀體黑質神經元調節睡眠-覺醒周期的相互作用仍未闡明。如將A2A受體高選擇性激動劑CGS21680,灌流到大鼠與基底前腦腹側區域下方的蛛網膜下腔,可增加NREM和 REM 睡眠[20,24],同時引起伏隔核殼區和腹外側視前區中c-Fos表達顯著增加[25-26]。若向伏隔核殼區直接灌流A2A受體激動劑,可誘導NREM和REM睡眠,睡眠量相當于向蛛網膜下腔灌流 A2A受體激動劑時的3/4[26]。這些結果說明激活伏隔核內或附近的A2A受體,可以促進睡眠。

咖啡因是人們常用飲料咖啡和茶中含有的活性物質,能提神醒腦。研究發現,咖啡因與A1和A2A受體結合親和力極為相近,且對這兩種受體亞型有拮抗作用[27]。用A1和A2A受體基因敲除小鼠的實驗揭示:咖啡因的覺醒作用是由A2A受體介導的,而不是A1受體[28]。

利用位點特異性基因操控技術,我們對基底核A2A受體的特殊作用進行了研究。用Cre-Lox技術條件性敲除小鼠的 A2A受體或大鼠腦部局部感染帶有A2A受體的短發夾RNA結構的腺病毒,對該受體基因表達,發現選擇性敲除伏隔核殼內的A2A受體導致咖啡因促覺醒作用消失,而選擇性敲除伏隔核核區或基底核其他區域的 A2A受體則對咖啡因的促覺醒作用沒有顯著影響。此結果提示咖啡因的促覺醒作用部位在伏隔核殼區內的A2A受體[29]。A2A受體在整個紋狀體大量表達,包括伏隔核殼區和核心區[30-31],因此,伏隔核殼區神經元上的A2A受體激動有助于抑制覺醒系統,促進睡眠。而咖啡因可對抗腺苷對覺醒系統的抑制作用,從而促進覺醒。研究發現,敲除多巴胺轉運體可減少 NREM睡眠、增加覺醒,促進對咖啡因促覺醒作用超敏[32]。盡管A2A受體的激活可通過減少膜內Gi蛋白耦聯來降低多巴胺對D2受體的親和力并抑制cAMP生成[33],腺苷及其拮抗劑,如咖啡因,能在紋狀體中通過A2A受體調節MSN活性,但并不依賴于D2受體[]。

長期以來,研究人員一直致力于闡明多巴胺在調節睡眠和覺醒中的作用。基于電解損傷貓中腦神經元的實驗發現,黑質和腹側背蓋區中含多巴胺的神經元僅和行為覺醒與反應的維持有關,而與大腦皮層電覺醒無關[36]。在體微透析實驗結合EEG記錄的研究提示:內側額葉前皮層和伏隔核中的胞外多巴胺水平在覺醒和 REM 睡眠時升高,而在NREM睡眠時則顯著降低[37]。伏隔核中REM睡眠時的高水平多巴胺,提示多巴胺可引起覺醒而不依賴于運動。相反,有證據表明在 REM 睡眠時,運動被腦干產生的脊髓肌肉弛緩機制所抑制,且腦橋損傷的動物可在REM睡眠時表現出更活躍的行為[38]。因此,在REM睡眠時伏隔核神經元可能被激活,但他們對運動的影響卻被腦橋的弛緩作用所減弱。

動物整體敲除D2受體可導致覺醒的顯著減少,同時伴有NREM和REM睡眠量增加,NREM睡眠時delta波顯著減弱[39],夜間活動期動物,通常

在很短暫的覺醒后即進入睡眠。這些研究清楚表明:D2受體在維持覺醒上發揮關鍵作用。之前的一項研究,神經毒性損毀室側中央導水管周圍灰質,減少覺醒,但這一效應在整個睡眠-覺醒周期都可被觀察到[40]。因此,在整體敲除D2受體小鼠中發現的夜間覺醒減少效應可能并非僅由室側中央導水管周圍灰質調控。D2受體激動劑quinelorane伏隔核給藥可增加覺醒的事實支持了這一假設[41]。利用正電子發射斷層掃描技術發現人類睡眠剝奪后,可引起D2受體下調[42]。另一方面,用于帕金森綜合征、不寧腿的D2受體激動劑piribedil、pramipexole可在患者中引起發作性睡病或嗜睡[43-44]。D2受體激動劑是一把雙刃劍,激動紋狀體神經元突觸前 D2受體,也可減少中腦邊緣系統和中腦皮層系統多巴胺能神經元多巴胺的釋放[45-46]。

莫達菲尼是一種強效促覺醒藥物,可用于治療帕金森病人的過度睡眠和其他睡眠障礙,如發作性睡病,輪班工作的睡眠紊亂和阻塞性睡眠呼吸暫停綜合征[47-48]。莫達菲尼可增加伏隔核和內側額葉前皮層中的胞外多巴胺水平[49]。敲除小鼠多巴胺轉運體,可取消莫達菲尼的促覺醒作用[32]。D2受體敲除小鼠,同時給予D1受體拮抗劑,莫達菲尼的促覺醒作用消失,相對于D1受體,D2受體更為重要[50]。

3 基底核調節睡眠-覺醒的機制

伏隔核是腹側紋狀體特有的結構,其傳入纖維涉及杏仁核的情感,海馬的信息處理,多巴胺能神經元的獎賞作用,以及前腦皮層的認知和執行信息的關鍵部位。整合基底核傳統的運動和獎賞行為通路與睡眠覺醒調節通路,可增強對睡眠-覺醒調節的理解。伏隔核中表達對咖啡因促覺醒作用極為重要的A2A受體表達在GABA能神經元,其纖維廣泛投射,包括腹側蒼白球,下丘腦外側,臂旁核和腹側背蓋區,可能有助于覺醒。因此,伏隔核的激活可能對覺醒系統產生抑制效應,促進睡眠。根據以上研究成果,我們提出了一個以伏隔核為核心的睡眠-覺醒調節機制新模型。

伏隔核可通過腹側蒼白球和丘腦到達內側額葉前皮層,這是一個認知和情緒間的關鍵通路,且也對睡眠和睡眠需求格外敏感[51-53],可能促進睡眠[54]。內側額葉前皮層能通過它向下丘腦睡眠-覺醒調節系統,如結節乳頭核、下丘腦外側和腦干核包括藍斑的直接下行投射發揮雙向調節作用[55-57]。例如損毀下邊緣皮質(一個額葉前皮層的亞區),能減少藍斑和結節乳頭核中的c-Fos表達,恢復大鼠應激引起的失眠模型中的NREM睡眠[58]。此外,伏隔核直接支配穹窿周圍外側下丘腦中的 orexin神經元和外側下丘腦后部表達谷氨酸轉運體 2的神經元[59-61]。腦內的Orexin神經元是整合感受性和穩態信號,增加覺醒、抑制REM睡眠的關鍵位點。選擇性損傷orexin神經元可導致發作性睡病[62]。盡管咖啡因全身給藥能使orexin神經元c-Fos表達增強[63],但咖啡因的促覺醒作用并不需要這些神經元參與[64]。相反,下丘腦后部的有向大腦皮層和基底核投射的谷胺酸能神經元能加強覺醒,但在睡眠-覺醒調節中的確切作用仍未確[65]。

此外,伏隔核殼內的神經元向腦橋臂旁核發出投射[66-67]。最近研究證明臂旁核是上行覺醒系統的關鍵組分,臂旁核損毀可引起昏迷[68]。臂旁核是腦干向基底核輸入的最大來源,同時還有大量的向外側下丘腦的投射。在中腦,伏隔核和腹側背蓋區之間的相互聯系可促進行為覺醒[69],但需要注意的是,伏隔核僅向內側部的腹側背蓋區投射,這一部位也是已知的皮層投射神經元來源,含有神經遞質谷氨酸[70]。在內側部的腹側背蓋區,咖啡因僅引起非多巴胺能神經元 c-Fos的表達[63],因此很可能是內側部的腹側背蓋區通過向大腦皮層的興奮性投射導致大腦皮層覺醒。

4 結語

睡眠受到了穩態(即睡眠壓),晝夜節律(即日常節奏)以及應變穩態如食物供應或應激等因素的調節[12,60,67,71-75]。腹側紋狀體擁有整合行為和情緒的功能,且很可能含有調節睡眠和覺醒的傳出纖維。我們認為,這是一個通過整合行為促進覺醒的重要位點,需要意識參與。而行為和覺醒在睡眠時均被抑制。現有的研究也提示,行為動機也可能是除穩態、晝夜節律和應變穩態因素之外的第四種調節睡眠和覺醒的重要機制。

多數睡眠異常疾病都被證實有基底核的功能障礙如帕金森綜合征、亨廷頓氏病[76-77],但其病因學基礎仍未知。由于行動障礙,心理問題、和/或藥物濫用干擾睡眠,引起睡眠異常使基底核功能障礙進一步惡化。因此,對調節睡眠-覺醒行為基底核環路的研究,有助于理解睡眠-覺醒調節機制,以有效治療基底核功能紊亂相關的睡眠障礙。

[1] Mahon S,Vautrelle N,Pezard L,et al. Distinct patterns of striatal medium spiny neuron activity during the natural sleep-wake cycle[J]. J Neurosci,2006,26(48):12587-12595.

[2] Urbain N,Gervasoni D,Soulière F,et al. Unrelated course of subthalamic nucleus and globus pallidusneuronal activities across vigilance states in the rat[J]. Eur J Neurosci,2000,12(9):3361-3374.

[3] Trulson,ME and Preussler DW. Dopamine-containing ventral tegmental area neurons in freely moving cats: activity during the sleep-waking cycle and effects of stress[J]. Exp Neurol,1984,83(2):367-377.

[4] Trulson ME,Preussler DW,Howell GA. Activity of substantia nigra units across the sleep-waking cycle in freely moving cats[J]. Neurosci Lett,1981,26(2):183-188.

[5] Dahan L,Astier B,Vautrelle N,et al. Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep[J]. Neuropsychopharmacology,2007,32(6):1232-1241.

[6] Baufreton J,Zhu ZT,Garret M,et al. Dopamine receptors set the pattern of activity generated in subthalamic neurons[J]. FASEB J,2005,19(13):1771-1777.

[7] Qiu MH,Vetrivelan R,Fuller PM,et al. Basal ganglia control of sleep-wake behavior and cortical activation[J]. Eur J Neurosci,2010,31(3):499-507.

[8] Vetrivelan R,Qiu MH,Chang C,et al. Role of Basal Ganglia in sleep-wake regulation: neural circuitry and clinical significance[J]. Front Neuroanat,2010:145.

[9] Gerashchenko D,Blanco-Centurion CA,Miller JD,et al. Insomnia following hypocretin2-saporin lesions of the substantia nigra[J]. Neuroscience,2006,137(1):29-36.

[10] Basheer R,Strecker RE,Thakkar MM,et al. Adenosine and sleep-wake regulation[J]. Prog Neurobiol,2004,73(6):379-396.

[11] Huang ZL,Urade Y,Hayaishi O. Prostaglandins and adenosine in the regulation of sleep and wakefulness[J].CurrOpinPharmacol. 2007, 7(1):33-38.

[12] Huang ZL,Urade Y,Hayaishi O. The role of adenosine in the regulation of sleep[J]. Curr Top Med Chem,2011,11(8):1047-1057.

[13] Porkka-Heiskanen T,Strecker RE,Thakkar M,et al. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulnes[J]. Science,1997,276(5316):1265-1268.

[14] Alam MN,Szymusiak R,Gong H,et al. Adenosinergic modulation of rat basal forebrain neurons during sleep and waking: neuronal recording with microdialysis[J]. J Physiol,1999,521(3):679-690.

[15] Strecker RE,Morairty S,Thakkar MM,et al. Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state[J]. Behav Brain Res, 2000, 115(2):183-204.

[16] Thakkar MM,Engemann SC,Walsh KM,et al. Adenosine and the homeostatic control of sleep: effects of A1 receptor blockade in the perifornical lateral hypothalamus on sleep-wakefulness[J]. Neuroscience,2008,153(4):875-880.

[17] Oishi Y,Huang ZL,Fredholm BB,et al. Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep[J]. Proc Natl Acad Sci U S A,2008,105(50):19992-19997.

[18] Methippara MM,Kumar S,Alam MN,t al. Effects on sleep of microdialysis of adenosine A1 and A2a receptor analogs into the lateral preoptic area of rat[J]. Am J Physiol Regul Integr Comp Physiol,2005,289(6):1715-1723.

[19] Benington JH,Kodali SK,Heller HC. Stimulation of A1 adenosine receptors mimics the electroencephalographic effects of sleep deprivation[J]. Brain Res,199,692(1-2):79-85.

[20] Urade Y,Eguchi N,Qu WM,et al. Sleep regulation in adenosine A2A receptor-deficient mice[J]. Neurology,2003,61(11 Suppl 6):94-96.

[21] Ochiishi T,Chen L,Yukawa A,et al. Cellular localization of adenosine A1 receptors in rat forebrain: immunohistochemical analysis using adenosine A1 receptor-specific monoclonal antibody[J]. J Comp Neurol,1999,411(2):301-316.

[22] Franco R,Lluis C,Canela EI,et al. Receptor-receptor interactions involving adenosine A1 or dopamine D1 receptors and accessory proteins[J]. J Neural Transm,2007,114(1):93-104.

[23] O'Neill C,Nolan BJ,Macari A,et al. Adenosine A1 receptor-mediated inhibition of dopamine release from rat striatal slices is modulated by D1 dopamine receptors[J]. Eur J Neurosci,2007,26(12):3421-3418.

[24] Satoh S,Matsumura H,Suzuki F,et al. Promotion of sleep mediated by the A2a-adenosine receptor and possible involvement of this receptor in the sleep induced by prostaglandin D2 in rats[J]. Proc Natl Acad Sci USA,1996,93(12):5980-5984.

[25] Satoh S, Matsumura H, Koike N, et al. Region-dependent difference in the sleep-promoting potency of an adenosine A2A receptor agonist[J]. Eur J Neurosci,1999,11(5):1587-1597.

[26] Scammell TE, Gerashchenko DY, Mochizuki T, et al., An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons[J]. Neuroscience,2001,107(4):653-663.

[27] Fredholm BB,B?ttig K,Holmén J,et al. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use[J]. Pharmacol Rev,1999,51(1):83-133.

[28] Huang ZL,Qu WM,Eguchi N,et al. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine[J]. Nat Neurosci,2005,8(7):858-859.

[29] Lazarus M,Shen HY,Cherasse Y,et al. Arousal effect of caffeine depends on adenosine A2Areceptors in the shell of the nucleus accumbens[J]. J Neurosci,2011,31(27):10067-10075.

[30] Rosin DL,Robeva A,Woodard RL,et al. Immunohistochemical localization of adenosine A2Areceptors in the rat central nervous system[J]. Comp Neurol,1998,401(2):163-186.

[31] Svenningsson P,Fourreau L,Bloch B,et al. Opposite tonic modulation of dopamine and adenosine on c-fos gene expression in striatopallidal neurons[J]. Neuroscience,1999,89(3):827-837.

[32] Wisor JP,Nishino S,Sora I,et al.Dopaminergic role in stimulant-induced wakefulness[J]. J Neurosci,2001,21(5):1787-1794.

[33] Fuxe K,Agnati LF,Jacobsen K,et al. Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson's disease[J]. Neurology,2003,61(11 Suppl 6):19-23.

[34] Aoyama S,Kase H,Borrelli E. Rescue of locomotor impairment in dopamine D2 receptor-deficient mice by an adenosine A2A receptor antagonist[J]. J Neurosci,2000,20(15):5848-5852.

[35] Chen JF,Moratalla R,mpagnatiello F,et al. The role of the D(2) dopamine receptorD(2)Rin A(2A) adenosine receptorA(2A)R-mediated behavioral and cellular responses as revealed by A(2A) and D(2) receptor knockout mice[J]. Proc Natl Acad Sci USA,2001,98(4):1970-1975.

[36] Jones BE,Bobillier P,Pin C,et al. The effect of lesions of catecholamine-containing neurons upon monoamine content of the brain and EEG and behavioral waking in the cat[J]. Brain Res,1973,58(1):157-177.

[37] Léna I,Parrot S,Deschaux O,et al. Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep--wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats[J]. J Neurosci Res,2005,81(6):891-899.

[38] Vetrivelan R,Fuller PM,Tong Q,et al. Medullary circuitry regulating rapid eye movement sleep and motor atonia[J]. J Neurosci,2009,29(29):9361-9369.

[39] Qu WM,Xu XH,Yan MM,et al. Essential role of dopamine D2 receptor in the maintenance of wakefulness, but not in homeostatic regulation of sleep, in mice[J]. J Neurosci,2010,30(12):4382-4389.

[40] Lu J,Jhou TC,Saper CB. Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter[J]. J Neurosci,2006,26(1):193-202.

[41] Barik S,de Beaurepaire R. Dopamine D3 modulation of locomotor activity and sleep in the nucleus accumbens and in lobules 9 and 10 of the cerebellum in the rat[J]. Prog Neuropsychopharmacol Biol Psychiatry,2005,29(5):718-726.

[42] Volkow ND,Tomasi D,Wang GJ,et al. Evidence that sleep deprivation downregulates dopamine D2R in ventral striatum in the human brain[J]. J Neurosci,2012,32(19):6711-6717.

[43] Tan EK. Piribedil-induced sleep attacks in Parkinson's disease[J]. Fundam Clin Pharmacol,2003,17(1):117-911.

[44] Lipford MC, Silber MH. Long-term use of pramipexole in the management of restless legs syndrome[J]. Sleep Med,2012,13(10):1280-1285.

[45] Monti JM,Hawkins M,Jantos H,et al. Biphasic effects of dopamine D-2 receptor agonists on sleep and wakefulness in the rat[J]. Psychopharmacology (Berl),1988,95(3):395-400.

[46] Sebban C,Zhang XQ,Tesolin-Decros B,et al. Changes in EEG spectral power in the prefrontal cortex of conscious rats elicited by drugs interacting with dopaminergic and noradrenergic transmission[J]. Br J Pharmacol,1999,128(5):1045-1054.

[47] H?gl B,Saletu M,Brandauer E,et al. Modafinil for the treatment of daytime sleepiness in Parkinson's disease: a double-blind, randomized, crossover, placebo-controlled polygraphic trial[J]. Sleep,2002,25(8):905-909.

[48] Minzenberg MJ,Carter CS. Modafinil: a review of neurochemical actions and effects on cognition[J]. Neuropsychopharmacology,2008,33(7):1477-1502.

[49] Murillo-Rodríguez E,Haro R,Palomero-Rivero M,et al. Modafinil enhances extracellular levels of dopamine in the nucleus accumbens and increases wakefulness in rats[J]. Behav Brain Res,2007,176(2):353-357.

[50] Qu WM,Huang ZL,Xu XH,et al. Dopaminergic D1 and D2 receptors are essential for the arousal effect of modafinil[J]. J Neurosci,2008,2(34):8462-8469.

[51] Chee MW,Choo WC. Functional imaging of working memory after 24 hr of total sleep deprivation[J]. JNeurosci,2004,24(19):4560-4567.

[52] Chuah YM,Venkatraman V,Dinges DF,et al. The neural basis of interindividual variability in inhibitory efficiency after sleep deprivation[J]. J Neurosci,2006,26(27):7156-7162.

[53] Muzur A,Pace-Schott EF,Hobson JA. The prefrontal cortex in sleep[J]. Trends Cogn Sci,2002,6(11):475-481.

[54] Koenigs M,Holliday J,Solomon J,et al. Left dorsomedial frontal brain damage is associated with insomnia[J]. J Neurosci,2010,30(47):16041-16043.

[55] Chou TC,Bjorkum AA,Gaus SE,et al. Afferents to the ventrolateral preoptic nucleus[J]. J Neurosci,2002,22(3):977-990.

[56] Hurley KM,Herbert H,Moga MM,et al. Efferent projections of the infralimbic cortex of the rat[J]. J Comp Neurol,1991,308(2):249-276.

[57] Saper CB,Scammell TE,Lu J. Hypothalamic regulation of sleep and circadian rhythms[J]. Nature,2005,437(7063):1257-1263.

[58] Cano G, Mochizuki T, and Saper CB, Neural circuitry of stress-induced insomnia in rats[J]. J Neurosci, 2008, 28(40):10167-10184.

[59] Hur EE,Zaborszky L. Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: a combined retrograde tracing in situ hybridization study[corrected] [J]. J Comp Neuro,2005,483(3):351-373.

[60] Sano H,Yokoi M. Striatal medium spiny neurons terminate in a distinct region in the lateral hypothalamic area and do not directly innervate orexin/hypocretin- or melanin-concentrating hormone-containing neurons[J]. J Neurosci,2007,27(26):6948-6955.

[61] Yoshida K,McCormack S,Espa?a RA,et al. Afferents to the orexin neurons of the rat brain[J]. J Comp Neurol,2006,494(5):845-861.

[62] Hara J,Beuckmann CT,Nambu T,et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity[J]. Neuron,2001,30(2):345-354.

[63] Deurveilher S,LoH,Murphy JA,et al. Differential c-Fos immunoreactivity in arousal-promoting cell groups following systemic administration of caffeine in rats[J]. J Comp Neurol,2006,498(5):667-689.

[64] Okuro M,Fujiki N,Kotorii N,et al. Effects of paraxanthine and caffeine on sleep, locomotor activity, and body temperature in orexin/ataxin-3 transgenic narcoleptic mice[J]. Sleep,2010,33(7):930-942.

[65] Saper CB,Fuller PM,Pedersen NP,et al. Sleep state switching[J]. Neuron,2010,68(6):1023-1042.

[66] Li CS,Chung S,Lu DP,et al. Descending projections from the nucleus accumbens shell suppress activity of taste-responsive neurons in the hamster parabrachial nuclei[J]. J Neurophysiol,2012,108(5):1288-1298.

[67] Usuda I,Tanaka K,Chiba T. Efferent projections of the nucleus accumbens in the rat with special reference to subdivision of the nucleus: biotinylated dextran amine study[J]. Brain Res,1998,797(1):73-93.

[68] Fuller PM,Sherman D,Pedersen NP,et al. Reassessment of the structural basis of the ascending arousal system[J]. J Comp Neurol,2011,519(5):933-956.

[69] Ikemoto S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex[J]. Brain Res Rev,2007,56(1):27-78.

[70] Heimer L,Zahm DS,Churchill L,et al. Specificity in the projection patterns of accumbal core and shell in the rat[J]. Neuroscience,1991,41(1):89-125.

[71] Krueger JM,Clinton JM,Winters BD,et al. Involvement of cytokines in slow wave sleep[J]. Prog Brain Res,2011,193:39-47.

[72] Urade Y, Hayaishi O. Prostaglandin D2 and sleep/wake regulation[J].Sleep Med Rev,2011,15(6):411-418.

[73] Achermann P,Borbely AA. Mathematical models of sleep regulation[J]. Front Biosci,2003,8:s683-693.

[74] Yamanaka A,Beuckmann CT,Willie JT,et al. Hypothalamic orexin neurons regulate arousal according to energy balance in mice[J]. Neuron,2003,38(5):701-713.

[75] Borbely AA. A two process model of sleep regulation[J]. Hum Neurobiol,1982,1(3):195-204.

[76] Adler CH,Thorpy MJ. Sleep issues in Parkinson's disease[J]. Neurology,2005,64(12 Suppl 3):S12-20.

[77] Goodman AO, Barker RA. How vital is sleep in Huntington's disease[J]. J Neurol,2010,257(6):882-897.

The Sleep-wake Regulation of A2AReceptor and D2Receptor in the Basal Ganglia

Wang Huijing, Qu Weimin, Huang Zhili*.*Department of Pharmacology, Fudan University Shanghai Medical College, Shanghai 241001 China

Huang Zhili,Email:huangzl@fudan.edu.cn

More and more studies began to pay attentions to the role of basal ganglia (BG) on sleep–wake regulation, among which striatum and globus pallidus might be the key structures in control of sleep and wakefulness. Adenosine A2Areceptor and dopamine D2receptors are highly co-expressed in the BG, particularly in the neurons of globus pallidus and the striatum. Adenosine is one of the strongest sleep-promoting endogenous substances so far discovered. It induces sleep via activating A1and A2Areceptors. While the dopamine D2receptor plays an important role in the maintenance of wakefulness. These results strongly suggest the regulating role of the A2Aand D2receptors in the BG in the regulation of sleep-wake. The excitatory adenosine A2Areceptors can activate the inhibitory GABA neurons in the nucleus accumbens thereby inhibit major arousal systems and promote sleep; while the inhibitory dopamine and D2receptor system play the opposite effects. The review will summarize the progress in the sleep-wake regulation of A2Areceptor and D2 receptor in the BG.

Basal ganglia;Sleep–wake;Adenosine A2Areceptor;Dopamine D2receptors

國家基礎研究規劃科研補助金:2011CB711000、2009ZX09303-006;國家自然科學基金:30901797、31171010、31121061、31271164;上海市重點學科建設項目:B119;國家教育部博士點基金資助項目:20110071110033

241001 復旦大學上海醫學院藥理學系

黃志力,E-mail:huangzl@fudan.edu.cn

主站蜘蛛池模板: 又猛又黄又爽无遮挡的视频网站| 久久99国产视频| 18禁影院亚洲专区| 九色91在线视频| 中文字幕丝袜一区二区| 亚洲中久无码永久在线观看软件| 国产办公室秘书无码精品| 极品国产一区二区三区| 日本亚洲国产一区二区三区| 视频国产精品丝袜第一页| 国产成人av大片在线播放| AV在线天堂进入| 视频一区亚洲| 色香蕉网站| 国产精品三级av及在线观看| 日本午夜三级| 色网站在线免费观看| 91精品国产一区自在线拍| 国产成人福利在线| 亚洲精品综合一二三区在线| 亚洲免费福利视频| 国产永久在线视频| 五月婷婷激情四射| 国内精品91| 青青操视频在线| 亚洲天堂免费在线视频| 国产成人精品一区二区三区| 成人一区在线| 99视频精品全国免费品| 中文字幕永久在线观看| 欧美日韩精品在线播放| 亚洲第一天堂无码专区| 精品偷拍一区二区| 日韩欧美视频第一区在线观看| 亚洲欧美人成电影在线观看| 国产在线精品美女观看| 在线精品欧美日韩| 日韩av无码精品专区| 色噜噜在线观看| 在线观看免费人成视频色快速| 真实国产乱子伦视频| 欧美一级专区免费大片| 国产精品自在拍首页视频8| 少妇极品熟妇人妻专区视频| 亚洲中文字幕精品| 欧洲av毛片| 亚洲国产日韩在线观看| 亚洲成a人在线播放www| 99久久国产综合精品女同| 久久99国产精品成人欧美| 亚洲视频在线青青| 国产精品久久久久久搜索| 黄色网页在线观看| 亚洲欧美激情另类| 精品国产成人三级在线观看| 自拍偷拍一区| 日本一区二区三区精品AⅤ| 国产精品99一区不卡| 亚洲视频一区| 亚洲天堂久久新| 国产素人在线| 2021国产乱人伦在线播放| 91年精品国产福利线观看久久 | 国产亚洲精品在天天在线麻豆| 国内精品一区二区在线观看 | 影音先锋丝袜制服| 国产精品亚洲欧美日韩久久| 免费高清毛片| 欧美成人手机在线视频| 国产美女91视频| 欧美福利在线观看| 无码高潮喷水在线观看| 亚洲自偷自拍另类小说| 亚洲最大综合网| 日韩av在线直播| 亚洲免费毛片| 熟妇丰满人妻| 日本精品一在线观看视频| 亚洲综合一区国产精品| 奇米精品一区二区三区在线观看| 亚洲国产欧美目韩成人综合| 91成人在线观看|