999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

激活態(tài)雪旺細(xì)胞對神經(jīng)干細(xì)胞分化作用的研究

2014-04-10 16:33:15張睿張軍趙承斌
中國醫(yī)藥導(dǎo)報 2014年7期

張睿+張軍+趙承斌

哈爾濱醫(yī)科大學(xué)附屬第四醫(yī)院骨科,黑龍江哈爾濱 150086

[摘要] 目的 探討激活態(tài)雪旺細(xì)胞(SCs)對神經(jīng)干細(xì)胞(NSCs)的分化作用。 方法 取出生24 h內(nèi)的SD乳鼠脊髓NSCs,分離培養(yǎng)并傳至4代。取體重(100±5)g的SD大鼠,結(jié)扎右側(cè)坐骨神經(jīng),1周后取雙側(cè)坐骨神經(jīng),左側(cè)提取正常坐骨神經(jīng)分離培養(yǎng)SCs(普通SCs),右側(cè)提取結(jié)扎變性的坐骨神經(jīng)分離培養(yǎng)SCs(激活態(tài)SCs),均采用雙酶消化加差速貼壁法。將SCs與NSCs應(yīng)用Transwell培養(yǎng)皿聯(lián)合培養(yǎng),分為三組:A組為激活態(tài)SCs與NSCs;B組為普通SCs與NSCs;C組僅為NSCs。于培養(yǎng)的第2、4、6天檢測各組NSCs活性。1周后,Western blot檢測各組SCs表皮生長因子(EGF)和堿性成纖維細(xì)胞生長因子(bFGF)的表達(dá)水平,免疫熒光檢測各組NSCs分化比例。 結(jié)果 傳至4代的NSCs生長穩(wěn)定,分離的SCs 7 d后大量增殖呈旋渦狀。聯(lián)合培養(yǎng)后MTT法檢測細(xì)胞活性,第2、4天三組細(xì)胞的活性差異無統(tǒng)計學(xué)意義(P > 0.05),第6天C組活細(xì)胞比例開始降低,A、B組與C組比較差異有統(tǒng)計學(xué)意義(P < 0.05),A組與B組比較差異無統(tǒng)計學(xué)意義(P > 0.05)。Western blot檢測A組細(xì)胞表皮生長因子(EGF)表達(dá)水平(0.486±0.028)、堿性成纖維細(xì)胞生長因子(bFGF)表達(dá)水平(0.385±0.023)均高于B組,差異有統(tǒng)計學(xué)意義(P < 0.05)。MAP-2熒光染色,每高倍視野陽性細(xì)胞比例A組[(35.26±2.53)%]高于B組[(27.63±3.45)%],差異有統(tǒng)計學(xué)意義(P < 0.05);GFAP熒光染色,每高倍視野陽性細(xì)胞比例A組[(62.42±3.78)%]低于B組[(70.18±1.26)%],差異有統(tǒng)計學(xué)意義(P < 0.05)。 結(jié)論 激活態(tài)SCs能夠促進(jìn)NSCs向神經(jīng)元的分化進(jìn)程,提高神經(jīng)元的分化比例。

[關(guān)鍵詞] 雪旺細(xì)胞;神經(jīng)干細(xì)胞;細(xì)胞分化;聯(lián)合培養(yǎng);神經(jīng)元

[中圖分類號] R741.02 [文獻(xiàn)標(biāo)識碼] A [文章編號] 1673-7210(2014)03(a)-0019-04

Effect of activated Schwann cells in inducing differentiation of neural stem cells

ZHANG Rui ZHANG Jun ZHAO Chengbin

Department of Orthopedic, the Fourth Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150086, China

[Abstract] Objective To discuss the effect of activated Schwann cells (SCs) in the differentiation of neural stem cells (NSCs). Methods The spinal cord of SD rat was taken in the 24 hours after birth. The NSCs from spinal cord were separated and cultured until the fourth passage. (100±5) g SD rat was used to ligature the right sciatic nerve. After one week, both the right and left sciatic nerve were isolated to culture SCs by double enzymes digestion and differential attachment. The SCs from the right sciatic nerve were named activated SCs, and the ones from the left side called common SCs. Then the SCs and NSCs were co-culture by Transwell culture dish, and they were divided into group A, group B and group C. group A was activated SCs and NSCs, group B was common SCs and NSCs, and group C was just NSCs as control. The cytoactive was detected at the second, fourth and sixth days. One week later, the EGF and bFGF secreted by SCs were detected in Western blot, and the differentiation ratio of NSCs was detected by immunofluorescence. Results The fourth passage NSCs grew stably, and the SCs proliferated as vortex after 7 days. The difference of cytoactive between the second and fourth day was not statistically significant (P > 0.05) according to the MTT detection. However, the cytoactive began to reduce at the sixth day by MTT detection, and the cytoactive of group A and group B were superior than those of group C, the differences were statistically significant (P < 0.05). The difference of cytoactive between group A and group B, the difference was not statistically significant (P > 0.05). The expression of EGF and bFGF in group A [(0.486±0.028), (0.385±0.023)] were both higher than those in group B, the differences were statistically significant (P < 0.05). The positive cells ratio of each high power field of group A [(35.26±2.53)%] was superior than that of group B [(27.63±3.45)%] according to the MAP-2 staining, the difference was statistically significant (P < 0.05). The positive cells ratio of each high power field of group A [(62.42±3.78)%] was lower than that of group B [(70.18±1.26)%] according to the GFAP staining, the difference was statistically significant (P < 0.05). Conclusion The activated SCs can promote the NSCs differentiate into neurons, and improve the ratio of neurons.

[Key words] Schwann cell; Neural stem cell; Cell differentiation; Co-culture; Neuron

[基金項目] 黑龍江省自然科學(xué)基金項目(編號D200901);黑龍江省教育廳科技研究項目(編號11531160)。

[作者簡介] 張睿(1987.2-),男,哈爾濱醫(yī)科大學(xué)2011級在讀碩士研究生;研究方向:神經(jīng)干細(xì)胞應(yīng)用。

[通訊作者] 趙承斌(1958.5-),男,主任醫(yī)師,教授,碩士研究生導(dǎo)師;研究方向:脊柱外科。

周圍神經(jīng)損傷是骨科常見的疾病之一,雖然周圍神經(jīng)具有一定的再生能力,但對于較大缺損卻很難自身修復(fù)[1]。隨著組織工程學(xué)領(lǐng)域研究的深入,神經(jīng)干細(xì)胞(NSCs)已被公認(rèn)為是對神經(jīng)損傷修復(fù)的有效方法,通過NSCs在神經(jīng)斷端的不斷分化,使受損的周圍神經(jīng)重新恢復(fù)連接。然而單純形態(tài)學(xué)得連接不能保證神經(jīng)的傳導(dǎo)功能,有研究表明,這與NSCs分化過程中分化為膠質(zhì)細(xì)胞和神經(jīng)元的比例有關(guān)[2],提高神經(jīng)元的分化比例,降低膠質(zhì)細(xì)胞的表達(dá)可有效提高神經(jīng)的傳導(dǎo)速度,因此許多學(xué)者通過不同方法促進(jìn)神經(jīng)干細(xì)胞向神經(jīng)元的分化[3-5],均取得了一定進(jìn)展。本研究通過激活態(tài)雪旺細(xì)胞(SCs)刺激NSCs的分化,觀察其誘導(dǎo)NSCs分化為神經(jīng)元的能力。

1 材料與方法

1.1 實驗材料

雌性SD大鼠[中國農(nóng)科院哈爾濱獸醫(yī)研究所提供,許可證號:SYXK(黑)2006-032];DMEM/F12細(xì)胞培養(yǎng)基(Hyclone公司,美國);青-鏈雙抗,胰蛋白酶,Ⅱ型膠原酶(碧云天,中國);兔抗鼠單克隆抗體Nestin,F(xiàn)ITC標(biāo)記的羊抗兔IgG,兔抗鼠堿性成纖維細(xì)胞生長因子(bFGF)、表皮細(xì)胞生長因子(EGF)單克隆抗體,兔抗鼠MAP-2、GFAP單克隆抗體(武漢博士德公司);Transwell培養(yǎng)皿(Corning公司,美國)。

1.2 實驗方法

1.2.1 神經(jīng)干細(xì)胞的分離培養(yǎng)與鑒定 取出生24 h內(nèi)的SD大鼠,斷髓處死后無菌條件下取出脊髓,顯微鏡下剝離硬脊膜,剪成5 mm3組織塊,加入0.25%胰酶消化10 min,用吸管反復(fù)吹打至單細(xì)胞懸液,加入5 mL DMEM/F12培養(yǎng)基終止消化。1000 r/min離心5 min,棄上清,加入含20 ng/mL的EGF和20 ng/mL的DMEM/F12培養(yǎng)液,重懸后移入細(xì)胞培養(yǎng)瓶,置于37℃含5%CO2的細(xì)胞培養(yǎng)箱中培養(yǎng)。每6~8天傳代1次,連續(xù)傳4代。取第4代神經(jīng)球,移入含有多聚賴氨酸包被的蓋玻片的6孔板內(nèi),24 h后取出蓋玻片,4%多聚甲醛固定,加入兔抗鼠Nestin(1∶100)單克隆抗體作為一抗,4℃過夜,加入異硫氰酸熒光素(FITC)標(biāo)記的羊抗兔二抗,孵育30 min,進(jìn)行觀察。

1.2.2 雪旺細(xì)胞的分離培養(yǎng) 取體重(100±5)g的SD大鼠,10%水合氯醛3 mL/kg腹腔麻醉后,以右側(cè)臀大肌為中心消毒,鋪無菌孔巾,縱行做一長約1.5 cm切口,分離暴露坐骨神經(jīng),于近端結(jié)扎,逐層縫合。1周后,處死大鼠,分離雙側(cè)坐骨神經(jīng),右側(cè)坐骨神經(jīng)由于結(jié)扎變性,SCs受刺激而發(fā)生激活,稱激活態(tài)SCs;左側(cè)為正常坐骨神經(jīng),提取的SCs稱為普通SCs。雙側(cè)坐骨神經(jīng)均剪成5 mm小段,加入0.1%胰蛋白酶和0.25%的Ⅱ型膠原酶消化1 h,反復(fù)吹打至單細(xì)胞懸液,加入5 mL DMEM/F12培養(yǎng)基終止消化。采用差速貼壁法,使成纖維細(xì)胞貼壁,未貼壁細(xì)胞移入含20 ng/mL EGF和20 ng/mL的DMEM/F12培養(yǎng)液中行原代培養(yǎng)。

1.2.3 細(xì)胞的分組與聯(lián)合培養(yǎng) 將細(xì)胞隨機(jī)分為3組,A組為激活態(tài)SCs與NSCs聯(lián)合培養(yǎng),B組為普通SCs與NSCs聯(lián)合培養(yǎng),C組NSCs單獨(dú)培養(yǎng),作為對照。細(xì)胞的聯(lián)合培養(yǎng)采用0.2 μm的6孔Transwell培養(yǎng)皿,上室為SCs,下室為NSCs。培養(yǎng)基采用不含任何營養(yǎng)因子的DMEM/F12培養(yǎng)基。于培養(yǎng)的第2、4、6天分別對下室細(xì)胞行MTT染色,檢測細(xì)胞活性。

1.2.4 Western blot檢測激活態(tài)雪旺細(xì)胞營養(yǎng)因子的表達(dá)水平 聯(lián)合培養(yǎng)1周后,取A、B兩組上室細(xì)胞,提取總蛋白,進(jìn)行電泳、轉(zhuǎn)膜、封閉,分別加入兔抗鼠EGF(1∶100)、bFGF(1∶200)單克隆抗體,4℃過夜,加入AP顯色液顯色。用Image-ProPlus專業(yè)圖像分析系統(tǒng)測定平均光密度值,并進(jìn)行統(tǒng)計學(xué)分析。

1.2.5 神經(jīng)干細(xì)胞分化的免疫熒光檢測 聯(lián)合培養(yǎng)1周后,將多聚賴氨酸包被的蓋玻片放入下室,24 h后取出蓋玻片,4%多聚甲醛固定,分別加入兔抗鼠MAP-2(1∶200)、GFAP(1∶200)單克隆抗體作為一抗,4℃過夜,加入FITC標(biāo)記的羊抗兔IgG二抗(1∶200),室溫孵育30 min。在100倍熒光顯微鏡下隨機(jī)選取6個不同視野,計數(shù)抗原陽性細(xì)胞數(shù)與全部細(xì)胞數(shù),計算陽性細(xì)胞數(shù)在全部細(xì)胞中的比值,公式為:陽性細(xì)胞比值=陽性細(xì)胞數(shù)/細(xì)胞總數(shù)×100%。

1.3 統(tǒng)計學(xué)方法

采用統(tǒng)計軟件SPSS 18.0對數(shù)據(jù)進(jìn)行分析,正態(tài)分布計量資料以均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,多組間比較采用方差分析,兩兩比較采用LSD-t檢驗。以P < 0.05為差異有統(tǒng)計學(xué)意義。

2 結(jié)果

2.1 神經(jīng)干細(xì)胞的分離培養(yǎng)與鑒定

NSCs在培養(yǎng)瓶內(nèi)懸浮生長,呈圓形,核較大,折光性強(qiáng)。于培養(yǎng)第5天開始聚集成團(tuán),呈球樣生長,第7天左右可見部分神經(jīng)球出現(xiàn)貼壁,并發(fā)出短小突起。傳4代后,NSCs形態(tài)穩(wěn)定,未見異型性改變。熒光染色可見聚集成球的NSCs發(fā)出綠色熒光,可見因貼壁而發(fā)出的短促突起。

2.2 激活態(tài)雪旺細(xì)胞的分離培養(yǎng)

結(jié)扎SD大鼠右側(cè)坐骨神經(jīng)后,大鼠出現(xiàn)右下肢跛行,1周后有足部有潰瘍形成。分離雙側(cè)坐骨神經(jīng),可見結(jié)扎遠(yuǎn)端坐骨神經(jīng)明顯較對側(cè)增粗。細(xì)胞經(jīng)差速貼壁以后可見胞體較大的成纖維細(xì)胞得以去除,去除后細(xì)胞呈梭形,3 d后,胞體增長,發(fā)出突起,至7 d細(xì)胞大量增殖呈旋渦狀排列,激活態(tài)SCs生長速度較普通SCs的生長速度快。

2.3 各組神經(jīng)干細(xì)胞的分化狀態(tài)

A組NSCs在培養(yǎng)5 d后即開始發(fā)出較長突起,出現(xiàn)貼壁細(xì)胞,細(xì)胞形態(tài)增長,細(xì)胞間借突起形成網(wǎng)狀連接。B組細(xì)胞在8 d后開始出現(xiàn)分化,但細(xì)胞發(fā)出的突起較A組短小。C組細(xì)胞仍呈球形生長,少見貼壁細(xì)胞。應(yīng)用MTT法檢測三組細(xì)胞的平均光密度值,可見第2、4天三組細(xì)胞的活性差異無統(tǒng)計學(xué)意義(P > 0.05),第6天C組活細(xì)胞比例開始降低,A、B組與C組比較差異有統(tǒng)計學(xué)意義(P < 0.05),A組與B組比較差異無統(tǒng)計學(xué)意義(P > 0.05)。見圖1。

A為激活態(tài)SCs作用下的NSCs活性檢測;B為普通SCs作用下的NSCs活性檢測;C為單獨(dú)培養(yǎng)的NSCs活性檢測

圖1 MTT法對神經(jīng)干細(xì)胞活性的檢測

2.4 激活態(tài)雪旺細(xì)胞營養(yǎng)因子的表達(dá)水平

A、B兩組上室細(xì)胞提取的蛋白經(jīng)電泳后,條帶清晰,兩組相同蛋白密度有差異,管家基因GAPDH作為內(nèi)參,電泳條帶亮度一致。應(yīng)用Image-ProPlus專業(yè)圖像分析系統(tǒng)測定平均光密度值,根據(jù)公式:相對量=產(chǎn)物電泳條帶密度/GAPDH×100%,計算各組蛋白量,可見A組細(xì)胞EGF、bFGF的表達(dá)水平均高于B組,差異有統(tǒng)計學(xué)意義(P < 0.05)。見表1。

表1 雪旺細(xì)胞營養(yǎng)因子表達(dá)的平均光密度值(x±s)

注:EGF:表皮生長因子,bFGF:堿性成纖維細(xì)胞生長因子

2.5 神經(jīng)干細(xì)胞分化的免疫熒光檢測

對三組細(xì)胞分別進(jìn)行MAP-2和GFAP染色,計算每高倍視野陽性細(xì)胞的比例。A組細(xì)胞MAP-2染色陽性率明顯高于B、C組,差異有統(tǒng)計學(xué)意義(P < 0.05);B組MAP-2染色陽性率明顯高于C組,差異有統(tǒng)計學(xué)意義(P < 0.05)。A組GFAP陽性率明顯低于B組,差異有統(tǒng)計學(xué)意義(P < 0.05);C組GFAP陽性率明顯低于A、B組,差異有統(tǒng)計學(xué)意義(P < 0.05)。見表2。

表2 免疫熒光染色陽性細(xì)胞在分化細(xì)胞中的比例(%,x±s)

注:與A組比較,*P < 0.05;與C組比較,▲P < 0.05

3 討論

各種外傷或病變所致的周圍神經(jīng)損傷一直以來都是顯微外科研究的重點內(nèi)容。雖然周圍神經(jīng)具有自我修復(fù)能力,但是如果缺損大于10 mm以上則很難使近端神經(jīng)纖維長入[6],從而造成永久性的功能喪失。為此有學(xué)者研制出干細(xì)胞結(jié)合導(dǎo)管支架的技術(shù)[7-10],使得周圍神經(jīng)的斷端得以重連,然而單純的形態(tài)學(xué)重建卻難以恢復(fù)神經(jīng)的傳導(dǎo)速度。有研究指出NSCs在體內(nèi)主要分化為膠質(zhì)細(xì)胞,而膠質(zhì)細(xì)胞則會影響神經(jīng)元的傳導(dǎo)速度[11-12],因此NSCs如何高效分化出神經(jīng)元就成為研究關(guān)鍵。

周圍神經(jīng)損傷后,損傷遠(yuǎn)端軸突發(fā)生華勒變性,繼而壞死溶解,周圍的SCs此時會發(fā)生增殖,一方面吞噬溶解的軸突,另一方面分泌大量神經(jīng)營養(yǎng)因子促進(jìn)近端軸突的長入[13-14]。本研究利用雪旺細(xì)胞這一特點,于體外建立SCs,使其持續(xù)分泌多種神經(jīng)營養(yǎng)因子,誘導(dǎo)NSCs的分化。有研究指出,NSCs的生長分化需要多種營養(yǎng)因子的協(xié)同作用[15-16],盡管某一因子的濃度較低,但卻是不可或缺的。體外添加營養(yǎng)因子則難以滿足干細(xì)胞分化的要求[17-18]。本研究運(yùn)用細(xì)胞聯(lián)合培養(yǎng)的方式,通過細(xì)胞間的旁分泌作用,克服這一不足。同時,應(yīng)用Transwell培養(yǎng)皿,借助聚碳酸酯膜的作用使細(xì)胞間不發(fā)生接觸,排除了細(xì)胞間的相互干擾。

本研究的結(jié)果可以看出,與普通SCs相比,激活態(tài)SCs對NSCs的誘導(dǎo)作用存在時間短、神經(jīng)元分化率高等優(yōu)點。但是從MTT染色可以看出,由于各組只應(yīng)用單純DMEM/F12培養(yǎng)基培養(yǎng),活細(xì)胞比例隨時間呈下降趨勢,說明單純在體外依靠雪旺細(xì)胞分泌的營養(yǎng)因子難以滿足NSCs的生長需求,從而解釋了體內(nèi)移植神經(jīng)干細(xì)胞死亡率高的原因[19-20]。這就需要進(jìn)一步探索能夠保持體內(nèi)高濃度營養(yǎng)因子的方法,從而維持NSCs的體內(nèi)生長狀態(tài)。

由于條件限制,本實驗尚存在一些不足之處,對SCs分泌的因子只進(jìn)行了較為重要的EGF和bFGF的檢測,如果能檢測出全部營養(yǎng)因子的表達(dá)水平,將有助于進(jìn)一步的詳細(xì)分析。

綜述所述,激活態(tài)雪旺細(xì)胞能夠促進(jìn)神經(jīng)干細(xì)胞向神經(jīng)元的分化進(jìn)程,提高神經(jīng)元的分化比例。

[參考文獻(xiàn)]

[1] Cheng LN,Duan XH,Zhong XM,et al. Transplanted neural stem cells promote nerve regeneration in acute peripheral nerve traction injury:assessment using MRI [J]. AJR Am J Roentgenol,2011,196(6):1381-1387.

[2] Chang DJ,Oh SH,Lee N,et al. Contralaterally transplanted human embryonic stem cell-derived neural precursor cells(ENStem-A)migrate and improve brain functions in stroke-damaged rats [J]. Exp Mol Med,2013,45:53.

[3] Akama K,Horikoshi T,Nakayama T,et al. Proteomic identification of differentially expressed genes during differentiation of cynomolgus monkey(Macaca fascicularis)embryonic stem cells to astrocyte progenitor cells in vitro [J]. Biochim Biophys Acta,2013,1834(2):601-610.

[4] Stringari C,Nourse JL,F(xiàn)lanagan LA,et al. Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential [J]. PLoS One,2012,7(11):48014.

[5] Jha RM,Liu X,Chrenek R,et al. The postnatal human filum terminale is a source of autologous multipotent neurospheres capable of generating motor neurons [J]. Neurosurgery,2013, 72(1):118-129.

[6] 李高山.骨髓基質(zhì)干細(xì)胞與施萬細(xì)胞聯(lián)合移植對周圍神經(jīng)缺損的修復(fù)作用[J].中國醫(yī)藥導(dǎo)報,2013,10(21):90-93.

[7] Emborg ME,Liu Y,Xi J,et al. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain [J]. Cell Rep,2013,3(3):646-650.

[8] Heermann S,Motlik K,Hinz U,et al. Glia cell line-derived neurotrophic factor mediates survival of murine sympathetic precursors [J]. J Neurosci Res,2013,91(6):780-785.

[9] He BL,Ba YC,Wang XY,et al. BDNF expression with functional improvement in transected spinal cord treated with neural stem cells in adult rats [J]. Neuropeptides,2013,47(1):1-7.

[10] Ishii M,Arias AC,Liu L,et al. A stable cranial neural crest cell line from mouse [J]. Stem Cells Dev,2012,21(17):3069-3080.

[11] Ortega F,Gascon S,Masserdotti G,et al. Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling [J]. Nat Cell Biol,2013,15(6):602-613.

[12] Bonner JF,Haas CJ,F(xiàn)ischer I. Preparation of neural stem cells and progenitors:neuronal production and grafting applications [J]. Methods Mol Biol,2013,1078:65-88.

[13] Lamond R,Barnett SC. Schwann cells but not olfactory ensheathing cells inhibit CNS myelination via the secretion of connective tissue growth factor [J]. J Neurosci,2013,33(47):18686-18697.

[14] Faulkner SD,Ruff CA,F(xiàn)ehlings MG. The potential for stem cells in cerebral palsy-piecing together the puzzle [J]. Semin Pediatr Neurol,2013,20(2):146-153.

[15] Nitzan E,Pfaltzgraff ER,Labosky PA,et al. Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3 [J]. Proc Natl Acad Sci USA,2013,110(31):12709-12714.

[16] Ren YJ,Zhang S,Mi R,et al. Enhanced differentiation of human neural crest stem cells towards the Schwann cell lineage by aligned electrospun fiber matrix [J]. Acta Biomater,2013,9(8):7727-7736.

[17] Guo X,Spradling S,Stancescu M,et al. Derivation of sensory neurons and neural crest stem cells from human neural progenitor hNP1 [J]. Biomaterials,2013,34(18):4418-4427.

[18] Xia L,Wan H,Hao SY,et al. Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord [J]. Chin Med J(Engl),2013,126(5):909-917.

[19] Armati PJ,Mathey EK. An update on Schwann cell biology-immunomodulation, neural regulation and other surprises [J]. J Neurol Sci,2013,333(1-2):68-72.

[20] Guo Z,Wang X,Xiao J,et al. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice [J]. Brain Res,2013,1532:14-20.

(收稿日期:2013-10-13 本文編輯:李繼翔)

[4] Stringari C,Nourse JL,F(xiàn)lanagan LA,et al. Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential [J]. PLoS One,2012,7(11):48014.

[5] Jha RM,Liu X,Chrenek R,et al. The postnatal human filum terminale is a source of autologous multipotent neurospheres capable of generating motor neurons [J]. Neurosurgery,2013, 72(1):118-129.

[6] 李高山.骨髓基質(zhì)干細(xì)胞與施萬細(xì)胞聯(lián)合移植對周圍神經(jīng)缺損的修復(fù)作用[J].中國醫(yī)藥導(dǎo)報,2013,10(21):90-93.

[7] Emborg ME,Liu Y,Xi J,et al. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain [J]. Cell Rep,2013,3(3):646-650.

[8] Heermann S,Motlik K,Hinz U,et al. Glia cell line-derived neurotrophic factor mediates survival of murine sympathetic precursors [J]. J Neurosci Res,2013,91(6):780-785.

[9] He BL,Ba YC,Wang XY,et al. BDNF expression with functional improvement in transected spinal cord treated with neural stem cells in adult rats [J]. Neuropeptides,2013,47(1):1-7.

[10] Ishii M,Arias AC,Liu L,et al. A stable cranial neural crest cell line from mouse [J]. Stem Cells Dev,2012,21(17):3069-3080.

[11] Ortega F,Gascon S,Masserdotti G,et al. Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling [J]. Nat Cell Biol,2013,15(6):602-613.

[12] Bonner JF,Haas CJ,F(xiàn)ischer I. Preparation of neural stem cells and progenitors:neuronal production and grafting applications [J]. Methods Mol Biol,2013,1078:65-88.

[13] Lamond R,Barnett SC. Schwann cells but not olfactory ensheathing cells inhibit CNS myelination via the secretion of connective tissue growth factor [J]. J Neurosci,2013,33(47):18686-18697.

[14] Faulkner SD,Ruff CA,F(xiàn)ehlings MG. The potential for stem cells in cerebral palsy-piecing together the puzzle [J]. Semin Pediatr Neurol,2013,20(2):146-153.

[15] Nitzan E,Pfaltzgraff ER,Labosky PA,et al. Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3 [J]. Proc Natl Acad Sci USA,2013,110(31):12709-12714.

[16] Ren YJ,Zhang S,Mi R,et al. Enhanced differentiation of human neural crest stem cells towards the Schwann cell lineage by aligned electrospun fiber matrix [J]. Acta Biomater,2013,9(8):7727-7736.

[17] Guo X,Spradling S,Stancescu M,et al. Derivation of sensory neurons and neural crest stem cells from human neural progenitor hNP1 [J]. Biomaterials,2013,34(18):4418-4427.

[18] Xia L,Wan H,Hao SY,et al. Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord [J]. Chin Med J(Engl),2013,126(5):909-917.

[19] Armati PJ,Mathey EK. An update on Schwann cell biology-immunomodulation, neural regulation and other surprises [J]. J Neurol Sci,2013,333(1-2):68-72.

[20] Guo Z,Wang X,Xiao J,et al. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice [J]. Brain Res,2013,1532:14-20.

(收稿日期:2013-10-13 本文編輯:李繼翔)

[4] Stringari C,Nourse JL,F(xiàn)lanagan LA,et al. Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential [J]. PLoS One,2012,7(11):48014.

[5] Jha RM,Liu X,Chrenek R,et al. The postnatal human filum terminale is a source of autologous multipotent neurospheres capable of generating motor neurons [J]. Neurosurgery,2013, 72(1):118-129.

[6] 李高山.骨髓基質(zhì)干細(xì)胞與施萬細(xì)胞聯(lián)合移植對周圍神經(jīng)缺損的修復(fù)作用[J].中國醫(yī)藥導(dǎo)報,2013,10(21):90-93.

[7] Emborg ME,Liu Y,Xi J,et al. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain [J]. Cell Rep,2013,3(3):646-650.

[8] Heermann S,Motlik K,Hinz U,et al. Glia cell line-derived neurotrophic factor mediates survival of murine sympathetic precursors [J]. J Neurosci Res,2013,91(6):780-785.

[9] He BL,Ba YC,Wang XY,et al. BDNF expression with functional improvement in transected spinal cord treated with neural stem cells in adult rats [J]. Neuropeptides,2013,47(1):1-7.

[10] Ishii M,Arias AC,Liu L,et al. A stable cranial neural crest cell line from mouse [J]. Stem Cells Dev,2012,21(17):3069-3080.

[11] Ortega F,Gascon S,Masserdotti G,et al. Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling [J]. Nat Cell Biol,2013,15(6):602-613.

[12] Bonner JF,Haas CJ,F(xiàn)ischer I. Preparation of neural stem cells and progenitors:neuronal production and grafting applications [J]. Methods Mol Biol,2013,1078:65-88.

[13] Lamond R,Barnett SC. Schwann cells but not olfactory ensheathing cells inhibit CNS myelination via the secretion of connective tissue growth factor [J]. J Neurosci,2013,33(47):18686-18697.

[14] Faulkner SD,Ruff CA,F(xiàn)ehlings MG. The potential for stem cells in cerebral palsy-piecing together the puzzle [J]. Semin Pediatr Neurol,2013,20(2):146-153.

[15] Nitzan E,Pfaltzgraff ER,Labosky PA,et al. Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3 [J]. Proc Natl Acad Sci USA,2013,110(31):12709-12714.

[16] Ren YJ,Zhang S,Mi R,et al. Enhanced differentiation of human neural crest stem cells towards the Schwann cell lineage by aligned electrospun fiber matrix [J]. Acta Biomater,2013,9(8):7727-7736.

[17] Guo X,Spradling S,Stancescu M,et al. Derivation of sensory neurons and neural crest stem cells from human neural progenitor hNP1 [J]. Biomaterials,2013,34(18):4418-4427.

[18] Xia L,Wan H,Hao SY,et al. Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord [J]. Chin Med J(Engl),2013,126(5):909-917.

[19] Armati PJ,Mathey EK. An update on Schwann cell biology-immunomodulation, neural regulation and other surprises [J]. J Neurol Sci,2013,333(1-2):68-72.

[20] Guo Z,Wang X,Xiao J,et al. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice [J]. Brain Res,2013,1532:14-20.

(收稿日期:2013-10-13 本文編輯:李繼翔)

主站蜘蛛池模板: 一级毛片在线免费视频| 一区二区欧美日韩高清免费| 国产成人综合久久精品尤物| 尤物视频一区| 亚洲乱码视频| 一级毛片免费观看不卡视频| 香蕉伊思人视频| 亚洲人人视频| 日本91视频| 99草精品视频| 日本午夜网站| 中文字幕一区二区视频| 中文字幕无码av专区久久| 精品国产中文一级毛片在线看| 亚洲综合久久一本伊一区| 欧美a级完整在线观看| 一级毛片网| 免费一看一级毛片| 亚洲乱码精品久久久久..| 全裸无码专区| 激情乱人伦| 一级毛片高清| 国产91透明丝袜美腿在线| 九色国产在线| 国产日产欧美精品| 51国产偷自视频区视频手机观看| 国产精品久久久久无码网站| 97国内精品久久久久不卡| 萌白酱国产一区二区| 亚洲欧洲免费视频| 日韩精品高清自在线| 欧美成人精品在线| 国产AV毛片| 尤物成AV人片在线观看| 精品国产欧美精品v| 欧美一区二区精品久久久| 精品91视频| 精品久久久久久成人AV| 国产精品第一区| 欧美精品xx| 久久不卡国产精品无码| 日韩欧美视频第一区在线观看| 四虎精品黑人视频| 日韩欧美视频第一区在线观看| 久久久久中文字幕精品视频| 一级一级特黄女人精品毛片| 国模私拍一区二区三区| 亚洲成人动漫在线观看| 欧美啪啪网| 老熟妇喷水一区二区三区| a色毛片免费视频| 欧美另类视频一区二区三区| 亚洲有无码中文网| 婷婷六月综合网| 9cao视频精品| 特级精品毛片免费观看| 久久激情影院| 久久黄色视频影| 免费播放毛片| 亚洲黄色成人| 亚洲一级无毛片无码在线免费视频| 国产精品 欧美激情 在线播放| 午夜小视频在线| 国产免费久久精品99re不卡 | 日韩a级毛片| 婷婷六月在线| 一区二区三区成人| 国产成人精品18| 99精品国产自在现线观看| 不卡午夜视频| 免费看的一级毛片| 无码福利视频| 国产精品久久久免费视频| 国内精品视频在线| 亚洲天堂网在线观看视频| 毛片久久网站小视频| 国产精品污视频| 成人综合网址| 在线观看国产精品第一区免费| 国产精品3p视频| 久热精品免费| 亚洲综合色婷婷中文字幕|