999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

K2CO3/Ni(OAc)2催化下的以苯甲酰胺和N,N-二溴苯甲酰胺為氮溴源的胺溴化反應(yīng)

2014-07-14 05:19:52韓建林李桂根
無機(jī)化學(xué)學(xué)報 2014年1期
關(guān)鍵詞:化學(xué)

陳 晟 韓建林*,,2 李桂根 潘 毅*,,2

(1南京大學(xué)化學(xué)化工學(xué)院,配位化學(xué)國家重點實驗室,南京 210093)

(2南京大學(xué)化學(xué)與生物醫(yī)學(xué)科學(xué)研究所,南京 210093)

(3化學(xué)與生物化學(xué)系,德克薩斯理工大學(xué),79409-1061,美國)

0 Introduction

Aminohalogenation of functionalized olefins plays an important role among all the methodologies for the preparation of vicinal haloamines[1],because it can construct carbon-nitrogen and carbon-halogen bonds in tandem fashions at the same time[2-11].The vicinal haloamines are also an important class of building blocks in organic and medicinal chemistry[12],as the halogen group can serve as a reactive functional group in substitution and coupling reactions,which have been demonstrated broad utility for the fine chemicals,synthetic intermediates and natural products[13-17].In the past decade,great development has been made on aminohalogenation reaction due to the exploration of several functionalized alkenes,such as α,β-unsaturated carboxylic esters[18-19],α,β-unsaturated nitriles[20],α,βunsaturated ketones[21-25]and so on[26-27].Especially,βnitrostyreneswereemployed asa new classof substrates for aminohalogenation,which have many advantages,including facile reaction conditions,diversification ofnitrogen source,oppositeregiochemistry and dramatically shorter reaction time[28-39].Also,the resulted vicinal nitro haloamine products can be easily converted into vicinal diamines[40-41].

Recently,severalnitrogen sources,such as imide[31],amide[30]and carbamate[32-36]have been used for β-nitrostyrene, and dihalogenated nitro amino compounds were formed.Our previous reports have shown that the nitrogen/halogen sources have a great effect on the formation of the final products in these systems,especially when β-methyl-β-nitrostyrenes are used as alkenes substrates[39,42].Furthermore,we can investigate the stereochemistry of aminohalogenation by using β-methyl-β-nitrostyrenes as substrates.So,it is essential to develope more efficient nitrogen source for aminohalogenation of β-methyl-β-nitrostyrenes.

Benzoyl is a useful group in synthetic and medicinal chemistry,especially with a halogen group on adjacent position,such as for the preparation of isoxazole,as well as for the synthesis of Pro-Drug[43-44].So,using benzamide as nitrogen source for aminohalogenation of β-methyl-β-nitrostyrenes becomes very interesting and challenging.Herein,we report a new aminobromination reaction of β-methyl-β-nitrostyrenes with benzamide/N,N-dibromobenzamide as nitrogen/brominesourcebyusingK2CO3/Ni(OAc)2asco-catalyst.

1 Experimental

1.1 General methods

Solvents were dried and distilled prior to use.Flash chromatography was performed on silica gel 60(GF-254)TCL plates(20 cm×20 cm).Melting points were uncorrected.IR spectra were collected with a Bruker Vector 22 instrument(KBr pellets).1H NMR(300 MHz)and13C NMR(75 MHz)(TMS was used as internal standard)were recorded on a 300 MHz spectrometer.HR-MS of the new compounds were measured with a Mariner TOF-ESI mass spectrometer

1.2 General procedure for aminobromination

To a dry round-bottomed vial was added βmethyl-β-nitrostyrenes 1(0.5 mmol),PhCONH22(121 mg,1 mmol),PhCONBr23 (278 mg,1 mmol),K2CO3(13.8 mg,0.1 mmol,20mol%)and Ni(OAc)2(1.8 mg,1mol%).Then 5 mL acetone was added into the vial.The mixture was electromagnetically stirred at room temperature for 48 h.The resulting solution was quenched with saturated Na2SO3(3.0 mL).The organic layer was separated and the aqueous layer was extracted with EtOAc (2 ×20 mL).The combined organic layers were dried with anhydrous Na2SO4,filtered and the solvent was removed to give the crude product,which was purified by preparative TLC plate.

N-2-bromo-2-nitro-1-phenylpropyl)benzamide 4a.White solid (157 mg,82%yield).m.p.91~92 ℃.1H NMR(300 MHz,CDCl3) δ 7.88~7.91(m,2H),7.59~7.52(m,4H),7.38~7.27(m,5H),5.95(d,J=9.6 Hz,1H),2.33(s,3H).13C NMR(75 MHz,CDCl3)δ 166.5,134.1,133.6,132.2,129.4,129.1,128.1,124.5,120.5,96.0,61.1,29.7 HR-MS [M+Na+]:Calcd.for C16H15Br N2O3Na:385.015 8,Found:385.015 0.IR(KBr):3 277,2 849,1 703,1 634,1 600,1 559,1 530,1 446,1 228,1 104 cm-1.

N-(2-bromo-1-(2-chlorophenyl)-2-nitropropyl)benzamide 4b.White solid (165 mg,79%yield).m.p.:136~138 ℃.1H NMR(300 MHz,CDCl3)δ 8.13~8.15(m,1H),7.90~7.93(m,2H),7.54~7.49(m,5H),7.31~7.25(m,2H),6.54(d,J=8.4 Hz,1H),2.32(s,3H).13C NMR (75 MHz,CDCl3) δ 166.3,134.9,133.4,132.7,130.5,129.0,128.8,128.0,127.2,124.4,120.5,94.2,57.1,28.1.HR-MS[M+Na+]:Calcd.for C16H14Br ClN2O3Na:418.976 9,Found:418.976 8.IR(KBr):3 273,2 924,1 701,1 638,1 557,1 530,1 477,1 229,1 100 cm-1.

N-(2-bromo-1-(3-methoxyphenyl)-2-nitropropyl)benzamide 4c.White solid (145 mg,70%yield).m.p.:60~62 ℃.1H NMR (300 MHz,CDCl3)δ 7.88~7.90(m,3H),7.51~7.58(m,4H),8.88~8.92(m,3H),5.91(d,J=9.0 Hz,1H),3.80(s,3H),2.32(s,3H).13C NMR(75 MHz,CDCl3) δ 166.5,159.8,135.5,133.6,132.2,130.2,128.8,127.8,127.2,120.4,114.2,95.8,61.1,55.3,29.7.HR-MS [M+Na+]:Calcd.for C17H17Br N2O4Na:415.0261,Found:415.0264.IR (KBr):3 261,2 924,1 703,1 645,1 602,1 558,1 446,1 386,1 075 cm-1.

N-(2-bromo-1-(4-fluorophenyl)-2-nitropropyl)benzamide 4d.White solid (157 mg,78%yield).m.p.:136~137 ℃.1H NMR(300 MHz,CDCl3)δ 7.95~7.81(m,3H),7.62~7.50(m,4H),7.32(m,1H),7.07~7.04(m,2H),5.94 (d,J=9.6 Hz,1H),2.32 (s,3H).13C NMR (75 MHz,CDCl3)δ 166.5,164.8,161.4,133.4,132.3,130.5,129.0,127.8,127.2,120.5,116.3(d,J=22.5 Hz),115.9,115.6,96.1,60.4,29.6.HR-MS[M+Na+]:Calcd.for C16H14BrFN2O3Na:403.006 4,Found:403.008 4.IR(KBr):3 246,2 959,1 701,1 664,1 603,1 556,1 386,1 340,1 301,1 076 cm-1.

N-(2-bromo-1-(4-cyanophenyl)-2-nitropropyl)benzamide 4e.White solid (132 mg,64%yield).m.p.:139~141 ℃.1H NMR(300 MHz,CDCl3)δ 7.80~7.89(m,3H),7.63~7.70(m,3H),7.53~7.49(m,4H),5.99(d,J=9.0 Hz,1H),2.34 (s,3H).13C NMR (75 MHz,CDCl3) δ 166.6,138.4,133.4,129.5,129.1,127.2,120.5,117.9,113.5,102.1,95.7,60.8,29.7.HR-MS[M+Na+]:Calcd.for C17H14BrN3O3Na:410.011 1,Found:410.010 5.IR(KBr):3 098,2 922,2 231,1 670,1 636,1 564,1 522,1 332,1 276,1 230,1 143 cm-1.

N-(2-bromo-1-(4-chlorophenyl)-2-nitropropyl)benzamide 4f.White solid (155 mg,74%yield).m.p.:147~149 ℃.1H NMR(300 MHz,CDCl3)δ 7.89~7.87(m,3H),7.60~7.52(m,4H),7.34~7.28(m,3H),5.92(d,J=9.6 Hz,1H),2.32(s,3H).13C NMR(75 MHz,CDCl3)δ 166.5,135.5,133.3,132.7,129.9,129.5,127.9,127.2,120.4,95.9,60.5,29.5.HR-MS[M+Na+]:Calcd.for C16H14BrClN2O3Na:418.976 9,Found:418.973 3.IR (KBr):3 246,2 945,1 700,1 663,1 558,1 446,1 385,1 343,1 077 cm-1.

N-(2-bromo-2-nitro-1-p-tolylpropyl)benzamide 4g.White solid (134 mg,67%yield).m.p.:125~128 ℃.1H NMR (300 MHz,CDCl3) δ 7.91~7.87 (m,3H),7.58~7.49(m,4H),7.19~7.16(m,3H),5.90(d,J=9.6 Hz,1H),2.34(s,3H),2.31(s,3H).13C NMR(75 MHz,CDCl3) δ 166.4,139.4,133.8,132.1,131.1,129.4,127.9,127.2,120.4,96.2,57.8,28.8,21.2 ppm.HRMS [M+Na+]:Calcd.for C17H17BrN2O3Na:399.031 5,Found:399.0314.IR(KBr):3 244,2 943,1 664,1 558,1 509,1 482,1 273,1 077 cm-1.

N-(2-bromo-1-(4-bromophenyl)-2-nitropropyl)benzamide 4h.White solid (164 mg,71%yield).m.p.:150~152 ℃.1H NMR(300 MHz,CDCl3)δ 7.89~7.87(m,2H),7.80~7.48(m,6H),7.29~7.19(m,2H),5.91(d,J=9.0 Hz,1H),2.31 (s,3H).13C NMR (75 MHz,CDCl3) δ 166.5,133.4,132.3,128.9,127.8,127.2,124.4,123.7,120.5,95.8,60.6,29.5.HR-MS [M+Na+]:Calcd.for C16H14Br2N2O3Na:462.926 3,Found:462.928 6.IR (KBr):2945,1664,1600,1509,1482,1307,1076,1009 cm-1.

N-(2-bromo-2-nitro-1-(4-nitrophenyl)propyl)benzamide 4i.White solid(120 mg,56%yield).m.p.:123~124 ℃.1H NMR (300 MHz,CDCl3)δ 8.26~8.22(m,2H),7.98~7.87(m,3H),7.82~7.51(m,5H),6.02(d,J=9.0 Hz,1H),2.36(s,3H)ppm.13C NMR(75 MHz,CDCl3) δ 166.6,148.4,141.2,132.8,129.8,129.4,127.8,127.2,123.8,120.4,95.7,60.6,29.8.HR-MS[M+Na+]:Calcd.for C16H14BrN3O5Na:430.000 9,Found:430.000 6.IR(KBr):3 172,2 924,1 660,1 625,1 578,1 143,1 026 cm-1.

N-(2-bromo-1-(2,3-dichlorophenyl)-2-nitropropyl)benzamide 4j.White solid(170 mg,75%yiled).m.p.:154~156 ℃.1H NMR(300 MHz,CDCl3)δ 7.92~7.89(m,2H),7.60~7.47(m,5H),7.18~7.12(m,2H),6.58(d,J=8.4 Hz,1H),2.33(s,3H).13C NMR(75 MHz,CDCl3)δ 166.3,135.2,133.4,131.4,129.0,128.9,128.2,127.5,125.7,124.5,120.5,93.8,57.9,29.2.HR-MS[M+Na+]:Calcd.for C16H13BrCl2N2O3Na:452.937 9,Found:452.9394.IR(KBr):3261,2924,1700,1 640,1 559,1 528,1 181,1 102 cm-1.

N-(2-bromo-1-(3-bromo-4-fluorophenyl)-2-nitropropyl)benzamide 4k.White solid(149 mg,62%yield).m.p.:96~99 ℃.1H NMR (300 MHz,CDCl3)δ 7.90~7.87(m,3H),7.60~7.52(m,5H),7.28~7.09(m,1H),5.88(d,J=9.3 Hz,1H),2.32(s,3H).13C NMR(75 MHz,CDCl3) δ 166.6,161.2,157.8,133.7,133.5,133.1,132.7,131.8,129.5,129.0,127.3,117.2(d,J=22.5 Hz),110.0,95.6,60.0,30.4.HR-MS [M+Na+]:Calcd.for C16H13Br2FN2O3Na:482.915 0,Found:482.915 3.IR(KBr):2934,1665,1509,1481,1445,1248,1129,cm-1.

2 Results and discussion

Initially,we chose NBS as model bromine source for the aminobromination of β-methyl-β-nitrostyrene and benzamide catalyzed by K2CO3with CH2Cl2as solvent.However,no desired product was obtained,even the reaction time was extended to 72 h.Then the combination of benzamide/N,N-dibromobenzamide was tried for this aminobromination(Table 1).No reaction was observed without any catalyst(entry 1).Then,a variety of inorganic bases,such as K2CO3,Na2CO3,KOH and K3PO4were utilized as the catalyst for this reaction.However,no reaction was found for all these catalysts (entries 2~5).Metal catalyst also could not catalyze the reaction to form the desired bromoamine products(entries 6~8).After many trials,we found the reaction could give the desired product with 30%yield if the reaction is catalyzed by the combination of K2CO3/MnSO4(entry 9).To improve the yield,other metal salts with K2CO3were examined(entries 10 and 11).Higher yield was obtained in the binary catalyst system consisted of K2CO3and Ni(OAc)2(82%,entry 11).Three other bases were also investigated in the presence of Ni(OAc)2,but no improvement was found(entries 12 ~14).Finally,the similar chemical yield was found when the loading amount of Ni(OAc)2was increased to 5mol% (entry 15).Organic base,like triethylamine was tried as catalyst with Ni(OAc)2,however,no desired product was observed(entry 16).

Then,the reaction conditions were further optimized.As shown in Table 2,no desired products were observed when methanol or toluene was used as solvent (entries 5 and 6).The best solvent for the reaction was acetone,giving the corresponding product with the highest yield (82%,entry 1).The reaction with CH2Cl2,CHCl3,acetonitrile or THF as solvent almost could not proceed,and only trace amount of haloamine products were detected(entries2~4 and 7).Water was also tried as solvent for the reaction,but no reaction was observed.The reaction time also showed effects on the chemical yields.A dramatic lower chemical yield was obtained when the reaction was stopped at 24 h (55%yield,entry 9),although no better yield was obtained when the reaction time was extended to 72 h (entry 8).Increasing the temperature to 40℃also gave no improvement on the yield(entry 10).

Table 1 Optimization of catalystsa

Table 2 Optimization of reaction conditionsa

Then,several α, β-unsaturated nitro compounds were subjected to this reaction to examine the scope and limitation ofthe currentaminobromination reaction(Table 3).As shown in Table 3,a wide scope of α, β-unsaturated nitro compounds worked well in the reaction,and proceeded completely within 48 h giving 56%~82%chemical yield.The electronegativity of the substituents on the aromatic rings showed almost no effects on the chemical yield.Both electronrich(entries 3 and 7)and electron-deficient substrates(entries 2,4~6 and 8~9)could participate well in the reaction,even for methoxy (entry 3)and fluoro(entry 4)groups.Notably,substrates with two substituent groups on aromatic ring were also well tolerated in this reaction (entries 10 and 11).These substrates showed moderate to good stereoselectivities,with ratios ranging from 3∶1 to 8∶1.Furthermore,only one regioisomer was observed for each of these cases.

According to the regio-and stereochemistry of the reaction and previous reports,a Michael addition pathway is proposed in Scheme 1 for this K2CO3/Ni(OAc)2catalyzed aminobromination reaction.In the initial step, N,N-dibromobenzamide reacts with benzamide forming the intermediate A, which undergoes deprotonation by K3CO3and results in intermediate B.Here,the nucleophile B cannot add directly to nitrostyrene comparing to our previous reports[34-35].This Michael addition needs the promotion of the catalyst Ni(OAc)2,and gives the intermediate D.Then,the Br+ion migrates from N-Br of amide to the negative center to form intermediate E.The intermediate E obtains a proton from HCO3-,giving the final product 4a and the catalyst CO32-.In the proposed mechanism,one catalyst K2CO3is used for deprotonation of nitrogen source,and the other catalyst Ni(OAc)2is used for the activation of nitrostyrene,which is different from the previous aminohalogenation reactions of nitrostyrenes[34-35].

Table 3 Aminobromination of various β-methyl-β-nitrostyrenes derivativesa

Scheme 1 Michael addition pathway for the K2CO3/Ni(OAc)2catalyzed aminobromination reaction

3 Conclusions

In summary,we have developed a new aminobromination reaction of β-methyl-β-nitrostyreneswith benzamide/N,N-dibromobenzamide as nitrogen/bromine source,which needs K2CO3/Ni(OAc)2as the co-catalyst.This facile and efficient system tolerates a broad range of substrates,giving moderate to good yield and high regio-and stereoselectivity.Further study on aminobromination of this nitrogen source is focused on the asymmetric catalyst.

Acknowledgements:We gratefully acknowledge the financial support from the National Natural Science Foundation of China(No.21102071)and the Fundamental Research Funds for the Central Universities(No.1107020522 and No.1082020502).The Jiangsu 333 program (for Pan)and Changzhou Jin-Feng-Huang program(for Han)are also acknowledged.

[1]Kemp J E.Comprehensive Organic Synthesis:Vol.3;Trost B M,Fleming I,Eds.;Oxford:Pergamon Press,1991:469-513

[2]Yeung Y Y,Gao X,Corey E J.J.Am.Chem.Soc.,2006,128:9644-9645

[3]Griffith D A,Danishefsky S J.J.Am.Chem.Soc.,1991,113:5863-5864

[4]Lessard J,Driguez H,Vermes J P.Tetrahedron Lett.,1970,11:4887-4891

[5]Daniher F A,Butler P E.J.Org.Chem.,1968,33:4336-4340

[6]Orlek B S,Stemp G.Tetrahedron Lett.,1991,32:4045-4048

[7]Manzoni M R,Zabawa T P,Kasi D,et al.Organometallics,2004,23:5618-5621

[8]Danielec H,Klugge J,Schlummer B,et al.Synthesis,2006:551-556

[9]Xu L,Du H F,Shi Y.J.Org.Chem.,2007,72:7038-7041

[10]Du H F,Zhao B G,Shi Y.J.Am.Chem.Soc.,2007,129:762-763

[11]Li G,Saibabu Kotti S R S,Timmons C.Eur.J.Org.Chem.,2007:2745-2758

[12]Qui J,Silverman R B.J.Med.Chem.,2000,43:706-720

[13]Chen D,Timmons C,Guo L,et al.Synthesis,2004:2749-2784

[14]Chen D,Kim S H,Hodges B,et al.ARKIVOC,2003(xii):56-62

[15]Chen D,Guo L,Liu J,et al.Org.Lett.,2005,7:921-924

[16]Mei H B,Yan L J,Han J L,et al.Chem.Biol.Drug Des.,2010,76:392-396

[17]Zhang G Q,An G H,Zheng J,et al.Tetrahedron Lett.,2010,51:987-989

[18]Li G,Wei H X,Kim S H,et al.Org.Lett.,1999,1:395-397

[19]Wei H X,Kim S H,Li G.Tetrahedron,2001,57:3869-3871

[20]Han J L,Zhi S J,Wang L Y,et al.Eur.J.Org.Chem.,2007:1332-1337

[21]Sun H,Zhang G Q,Zhi S J,et al.Org.Biol.Chem.,2010,8:4236-4239

[22]Chen Z G,Wei J F,Li R T,et al.J.Org.Chem.,2009,74:1371-1373

[23]Thakur V V,Talluri S K,Sudalai A.Org.Lett.,2003,5:861-864

[24]Wu X L,Xia J J,Wang G W.Org.Biomol.Chem.,2008,6:548-553

[25]Wei J F,Zhang L H,Chen Z G,et al.Org.Biomol.Chem.,2009,7:3280-3284

[26]Li W L,Chen Z G,Zhou J M,et al.Chin.J.Chem.,2012,30:830-836

[27]Qi M H,Shao L X,Shi M.Chin.J.Chem.,2011,29:2739-2743

[28]Zhi S J,Han J L,Lin C,et al.Synthesis,2008:1570-1574

[29]Zhi S J,Sun H,Lin C,et al.Sci.China Chem.,2010,53:140-146

[30]Zhi S J,Mei H B,Zhang G Q,et al.Sci.China Chem.,2010,53:1946-1952

[31]Qian Y,Ji X Y,Zhou W,et al.Tetrahedron,2012,68:6198-6203

[32]Mei H B,Han J L,Li G,et al.RSC Adv.,2011,1:429-433

[33]Mei H B,Xiong Y W,Qian Y,et al.RSC Adv.,2012,2:151-155

[34]Ji X Y,Mei H B,Qian Y,et al.Synthesis,2011:3680-3686

[35]Ji X Y,Duan Z Q,Qian Y,et al.RSC Adv.,2012,2:5565-5570

[36]Chen Z G,Zhao P F,Wang Y.Eur.J.Org.Chem.,2011:5887-5893

[37]Chen Z G,Wang Y,Wei J F,et al.J.Org.Chem.,2010,75:2085-2088

[38]Zhi S J,Sun H,Zhang G Q,et al.Org.Biomol.Chem.,2010,8:628-631

[39]Zhi S J,An G H,Sun H,et al.Tetrahedron Lett.,2010,51:2745-2747

[40]Enders D,Wiedemann J.Synthesis,1996:1443-1450

[41]Lucet D,Toupet L,Gall T L,et al.J.Org.Chem.,1997,62:2682-2683

[42]Chen S,Han J L,Li G G,et al.Tetrahedron Lett.,2013,54:2781-2784

[43]ChudasamaV,WildenJD.Chem.Commun.,2008:3768-3770

[44]Ferjancic Z,Matovic R,Saicic R N.Tetrahedron,2006,62:8503-8514

猜你喜歡
化學(xué)
化學(xué)與日常生活
奇妙的化學(xué)
奇妙的化學(xué)
奇妙的化學(xué)
奇妙的化學(xué)
奇妙的化學(xué)
化學(xué):我有我“浪漫”
化學(xué):舉一反三,有效學(xué)習(xí)
考試周刊(2016年63期)2016-08-15 22:51:06
化學(xué)與健康
絢麗化學(xué)綻放
主站蜘蛛池模板: 免费播放毛片| 亚洲第一成年网| 国产玖玖视频| 欧美午夜在线观看| 日韩在线观看网站| 欧美日韩免费观看| 国产99精品视频| 精品少妇人妻一区二区| 久热re国产手机在线观看| 国产全黄a一级毛片| 毛片视频网| 午夜免费小视频| 色吊丝av中文字幕| 男女性午夜福利网站| 伊人成色综合网| 亚洲国产在一区二区三区| 日韩精品无码不卡无码| 国产色爱av资源综合区| 日韩精品欧美国产在线| 亚卅精品无码久久毛片乌克兰| 久久综合色天堂av| 成人另类稀缺在线观看| 国产精鲁鲁网在线视频| 欧美日韩免费| 亚洲精品国产日韩无码AV永久免费网| 亚洲性色永久网址| 日韩成人在线视频| 538国产视频| 妇女自拍偷自拍亚洲精品| 国产美女免费网站| 亚洲成人在线网| 国产在线观看精品| 白丝美女办公室高潮喷水视频| 亚洲色大成网站www国产| 国产Av无码精品色午夜| 日本少妇又色又爽又高潮| 亚洲一区网站| 久久天天躁狠狠躁夜夜躁| 国产女人喷水视频| 三上悠亚精品二区在线观看| 毛片网站观看| 99久久精品无码专区免费| 亚洲91在线精品| 亚洲国产成人麻豆精品| 在线一级毛片| 国产乱人激情H在线观看| 国产成人三级在线观看视频| 色综合五月| 99福利视频导航| 在线精品自拍| 午夜毛片免费看| 亚洲欧美不卡视频| 国产精品国产三级国产专业不 | 国产成人无码播放| 成人在线观看不卡| 国产女人在线视频| 真人免费一级毛片一区二区 | 亚洲欧美日韩动漫| 五月婷婷综合网| 久久综合色视频| 性色生活片在线观看| 99视频在线观看免费| 夜色爽爽影院18禁妓女影院| 色综合狠狠操| 中文字幕2区| 国产不卡国语在线| 亚洲 欧美 偷自乱 图片 | 亚洲香蕉久久| 老司国产精品视频91| 国产无码性爱一区二区三区| 一级成人欧美一区在线观看| 精品久久777| 国产青青草视频| 国产乱人视频免费观看| 毛片网站观看| 日本人妻丰满熟妇区| 一本一本大道香蕉久在线播放| 国产精品流白浆在线观看| 免费久久一级欧美特大黄| 亚洲IV视频免费在线光看| 久久黄色小视频| 一区二区三区四区日韩|