999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

置換性很好的一類群

2014-07-19 13:54:58鐘艷林曾吉文

鐘艷林,曾吉文

(1.閩南理工學(xué)院信息管理系,福建泉州362700;2.廈門大學(xué)數(shù)學(xué)科學(xué)院,福建廈門361005)

置換性很好的一類群

鐘艷林1,曾吉文2

(1.閩南理工學(xué)院信息管理系,福建泉州362700;2.廈門大學(xué)數(shù)學(xué)科學(xué)院,福建廈門361005)

主要研究子群置換性質(zhì)對(duì)有限群結(jié)構(gòu)的影響.通過(guò)子群的置換性得到一類群,即B群.B群是全可置換群的擴(kuò)展,利用全可置換群的p次中心擴(kuò)張和子群的階得到B群的一些性質(zhì)并對(duì)B群的結(jié)構(gòu)進(jìn)行一些刻畫(huà).應(yīng)用B群的結(jié)構(gòu)得到有限p(p>2)群為二元生成的B群的充要條件.關(guān)鍵詞:有限群;B群;有限p群

1 基本知識(shí)

設(shè)G是有限群,記S1(G)={H|H是G的素?cái)?shù)冪階群},S2(G)={H|H是G的素?cái)?shù)階群,且|H|2||G|},若HΦ(G),K∈S1(G),總有HK=KH,則稱G是一個(gè)A群.若HΦ(G),K∈S1(G)?S2(G),總有HK=KH,則稱G是一個(gè)B群.如果G是A群,則G是全可置換群(見(jiàn)文獻(xiàn)[1]定理1.2).

從定義出發(fā),可以得到這樣的結(jié)論:若G是A群,則G是B群.若G是A群,則可以認(rèn)為不包含于Φ(G)的子群的置換性強(qiáng),G是全可置換群.這樣的群的結(jié)構(gòu)已知(見(jiàn)文獻(xiàn)[2]).若G是B群,則認(rèn)為不包含于(G)的子群的置換性稍弱一些.由定理2.1可以看出,G就是冪零群.提出問(wèn)題:若G是B群,則G是怎樣的?

2 主要結(jié)論及證明

定理2.1設(shè)G是B群.則

(1)G是冪零群.

(2)若P是G的一個(gè)Sylow子群,則G/P是B群.

(3)若P是G的一個(gè)Sylow子群,則P是B群.若1?=NP,則P/N是A群.

(4)若G是有限p群且不是A群,則G是外A群.

證明(1)任取P∈Sylp(G),其中,Sylp(G)表示G的Sylow子群,由p||G/Φ(G)|可知, P?∈Φ(G).任取P1∈Sylp(G),則PP1=P1P.由

可知,|PP1|=|P|.因此P1?P.則G的Sylow p子群唯一.因此G是冪零群[3].

(2)設(shè)H/P≤G/P且H/P?≤Φ(G/P),K/P≤G/P且K/P∈S1(G/P)?S2(G/P).由G是冪零群,則可設(shè)

其中P是G的Sylow子群.因此K=K×P,其中K∩P=1.容易得到:

i11

因此HK=KH.則H/PK/P=K/PH/P.因此G/P是B群.

(3)由B群的定義易得P是B群.設(shè)H/N≤P/N且H/N?≤Φ(P/N),K/N≤P/N.不妨設(shè)

則|K|≥p2.從而K∈S1(P)?S2(P).由H?≤(P)可知,

則H/NK/N=K/NH/N.因此P/N是A群.

(4)由G不是A群以及(3)可知結(jié)論.

由定理2.1(1)可知,一個(gè)B群為其Sylow子群的直積,故應(yīng)該對(duì)其Sylow子群進(jìn)行研究.由定理2.1(3)可知,一個(gè)B群的Sylow子群也是B群.因此對(duì)B群為有限p群進(jìn)行研究.

定理2.2設(shè)G是一個(gè)非交換的有限p群.若G是B群,則存在H≤G′∩Z(G),|H|=p,使得G/H是全可置換群.

證明取H≤G′且H是G的一個(gè)p階正規(guī)子群.顯然H≤Z(G)[4].由定理2.1(3)可知,G/H是A群.因此G/H是全可置換群.

定理2.3設(shè)G是一個(gè)有限p群,p>2,|G/Φ(G)|=pd,G=〈a1,a2,···,ad〉,T=〈a,b〉,其中a,b∈{a1,a2,···,ad}.

若G是B群,則T為下列群之一:

(1)Mp(1,1,1);(2)Cpm×Cpn;(3)非交換亞循環(huán)群.

證明若T交換,由d(T)=2可知:即定理中的(2).以下設(shè)T非交換.取H

情形1交換

則可以設(shè)

其中1≤i,j,k≤p.

此時(shí)討論參數(shù)n:

因此ab∈K〈a〉.

另一方面,ab=bac?∈〈b〉〈a〉?K〈a〉.這與ab∈K〈a〉矛盾.

情形2不交換

其中參數(shù)r,s,u,t是非負(fù)整數(shù)且滿足r≥1,u≤r.設(shè)T=〈a,b〉.

則可以設(shè)

其中1≤i,j,k≤p.

子情形1i?=p

由T′=〈[a,b],T3〉,通過(guò)計(jì)算容易得到,T′=〈aprxk〉,即T′循環(huán).因?yàn)椴唤粨Q,所以r+s+u>r.因此可以得到x∈T′.

若x?∈?1(T′),由T′循環(huán)可知T′=〈x〉.這與T′=〉矛盾.因此有

子情形2i=p

此時(shí)

若j?=p時(shí),則

顯然〈a〉〈b〉?T.因此T=〈a〉〈b〉.故T亞循環(huán).得到定理中(3)的一部分.因此總有j=p.此時(shí)

若k=p,則d(T)?=2.矛盾.所以總有k?=p.用xk替換x,有

通過(guò)計(jì)算容易得到apr+s+u?1∈Z(G).

令K=〈apr+s+u?1〉×〈b〉,則|K|≥p2.由〈a〉??(G),則〈a〉K=K〈a〉.因此ab∈K〈a〉.

另一方面,

這與〈a〉K=K〈a〉矛盾.因此沒(méi)有得到符合條件的群.

推論2.1設(shè)G是一個(gè)有限p群,p>2,|G/Φ(G)|=pd,G=〈a1,a2,···,ad〉,T=〈a,b〉,其中a,b∈{a1,a2,···,ad}.

(1)若G是B群,則T也是B群.

(2)設(shè)T1≤T,T2≤T,|T2|?=p.若G是B群,則T1T2=T2T1.

證明(1)由定理3可知,TMp(1,1,1)或者T為一個(gè)亞循環(huán)群.亞循環(huán)群都是A群,因此都是B群.

只需驗(yàn)證Mp(1,1,1)是B群.?K≤T且|K|?=p,則有KT.由B群定義可知, Mp(1,1,1)是B群.即T是B群.

推論2.2設(shè)G是一個(gè)有限p群,p>2.G是二元生成的B群當(dāng)且僅當(dāng)G為下列群之一:

(1)Mp(1,1,1);(2)Cpm×Cpn;(3)非交換亞循環(huán)群.

證明(?)由定理3直接推出.

(?)只需對(duì)定理中的群一一驗(yàn)證是B群.證明過(guò)程同推論4的證明.

推論2.3設(shè)G是一個(gè)有限p群,p>2,G是二元生成的B群.若H≤G,則H是一個(gè)B群.

證明只需對(duì)推論5中的群進(jìn)行驗(yàn)證.注意到亞循環(huán)群的子群都是亞循環(huán)群即可得到結(jié)論.

[1]Kirtland J.Finite groups with all subgroups not contained in the Frattini subgroup permutable[J].Arch. Math.,2011,97:399-406.

[2]Iwasawa K.Uber die endlichen Gruppen und die Verba nde ihrer Untergruppen[J].Fac.Sci.Imp.Tokyo Sect.,1941,14:171-199.

[3]徐明曜.有限群導(dǎo)引(上冊(cè))[M].2版.北京:科學(xué)出版社,1999.

[4]徐明曜,曲海鵬.有限p群[M].北京:北京大學(xué)出版社,2010.

Some groups with a good permutability of subgroups

Zhong Yanlin1,Zeng Jiwen2
(1.Information Management Department,Minnan University of Science and Technology, Quanzhou362700,China; 2.School of Mathematical Science,Xiamen University,Xiamen361005,China)

The paper studies the in fl uence of subgroups replacement properties on the structure of fi nite groups. A fi nite group is derived from the subgroup replacement properties,which is called B group.B groups is the extension of full permutation groups,the power of p center expansion of full permutation groups and Subgroups order use to get some properties of B groups and descriptions about the structure of B groups.By using the structure of B group,we get the necessary and sufficient conditions of a fi nite p(p>2)group being a binary generating B group.

fi nite groups,B groups, fi nite p groups

O152

A

1008-5513(2014)05-0491-05

10.3969/j.issn.1008-5513.2014.05.009

2014-06-10.

福建省中青年教師教育科研項(xiàng)目(JB14108);福建省自然科學(xué)基金(2012J01022).

鐘艷林(1980-),碩士,講師,研究方向:有限群論及p群.

2010 MSC:20B05

主站蜘蛛池模板: 国产精品极品美女自在线| 青草91视频免费观看| 欧美中文字幕一区二区三区| 欧美在线一二区| 97精品久久久大香线焦| 色欲综合久久中文字幕网| 国产中文一区a级毛片视频 | 日韩 欧美 国产 精品 综合| 久久精品aⅴ无码中文字幕| 亚洲一区二区成人| 青青青国产视频手机| 亚洲综合日韩精品| 国产爽爽视频| 亚洲妓女综合网995久久| 亚洲AⅤ无码国产精品| 国产99视频精品免费视频7| 国产午夜小视频| 一区二区三区毛片无码 | 亚洲最新在线| 亚洲视频免费在线看| 国产精品久久国产精麻豆99网站| 国产精品偷伦视频免费观看国产| 无码中字出轨中文人妻中文中| 免费中文字幕在在线不卡| 免费激情网址| 久久国产乱子| 无码免费视频| 亚洲日产2021三区在线| 亚洲免费播放| 日韩av无码DVD| 在线免费观看a视频| 日本不卡视频在线| 不卡网亚洲无码| 成人一级免费视频| 国产成本人片免费a∨短片| 久久77777| 亚洲一级毛片在线观播放| 国产自无码视频在线观看| 啪啪啪亚洲无码| yjizz国产在线视频网| 色综合久久久久8天国| 色偷偷男人的天堂亚洲av| 久久6免费视频| 国产三级国产精品国产普男人| 久久久久久久久18禁秘| 精品人妻一区二区三区蜜桃AⅤ| 婷婷综合色| 日韩在线观看网站| 色婷婷成人| 国产精品区网红主播在线观看| 国产91精品久久| 99热这里只有精品5| 原味小视频在线www国产| 国产情侣一区| 美女视频黄又黄又免费高清| 91美女在线| 国内精品视频在线| 四虎免费视频网站| 国产精品乱偷免费视频| 国产精品网曝门免费视频| 孕妇高潮太爽了在线观看免费| 91尤物国产尤物福利在线| 一边摸一边做爽的视频17国产 | 婷婷激情五月网| 国产a v无码专区亚洲av| 亚洲精品在线91| 黄色网页在线观看| 9丨情侣偷在线精品国产| 老汉色老汉首页a亚洲| 永久在线播放| 国产97视频在线| 美女被躁出白浆视频播放| 亚洲愉拍一区二区精品| 国产精品久久久久鬼色| 黄色在线不卡| 日韩成人免费网站| 国产国产人成免费视频77777 | 毛片最新网址| 久久国产精品麻豆系列| 亚洲欧美人成人让影院| 国产美女在线免费观看| 漂亮人妻被中出中文字幕久久|