999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一類單調算子的新不動點定理

2014-07-19 11:07:02王維娜薛西鋒
純粹數學與應用數學 2014年3期
關鍵詞:定義數學

王維娜,薛西鋒

(西北大學數學學院,陜西西安710127)

一類單調算子的新不動點定理

王維娜,薛西鋒

(西北大學數學學院,陜西西安710127)

利用單調迭代法、數學歸納法以及序差距的性質,在半序Banach空間中探究不具有緊性、連續性以及任何凹凸性的單調算子不動點存在以及惟一性問題,得出其新不動點定理,這些結果對相關結論進行了推廣,使其適用范圍更廣,同時將該結論應用于求解Volterra型積分方程組問題中.

單調算子;正規錐;不動點;序差對;序差距

1 引言及預備知識

對于單調算子不動點的研究,現已有許多的結果[1-8].有些文獻在研究單調算子不動點時,要求單調算子具有某種緊性或連續性或凹凸性,文獻[1]利用序差的性質及數學歸納法,文獻[2-7]運用錐理論知識和單調迭代技巧,文獻[8]采用與以往大不相同的假設和迭代格式均研究了不具有以上條件而滿足其他某些條件的單調算子的不動點存在惟一性問題.本文在半序Banach空間中引入序差對和序差距的概念,利用單調迭代法、數學歸納法以及序差距的性質,去掉單調算子的緊性、連續性以及凹凸性,在更廣泛的條件下,得到半序Banach空間中單調算子的新不動點定理,同時將其結論應用于求解Volterra型積分方程組的問題中,使其求解更加簡便.

設E是Banach空間,P是E中的一個錐[3].

定義1.1錐P是正規的,若存在常數N>0,使得θ≤x≤y?∥x∥≤N∥y∥,且稱滿足條件的最小正數N為P的正規常數.

定義1.2P是E中的錐,θ≤u≤v,對于h∈P,若?M>0,使得v≤Mh,則令

稱a?b為u和v的h-序差,并且記dh(u,v)=a?b.

定義1.3設a?b,c?d分別為u和v,r和s的h-序差,即dh(u,v)=a?b,dh(r,s)=c?d,則(dh(u,v),dh(r,s))為序差對.

定義1.4稱序差對(dh(u,v),dh(r,s))到(0,0)點的距離為序差距,并且記為

定義1.5設E是半序空間[3],在E×E中定義新的半序關系:若x1≤x2,y1≥y2,則記(x1,y1)≤(x2,y2).

引理1.1設E是Banach空間,P為E中一個錐,則E×E在定義1.5的半序下是半序空間.

證明(i)?(x1,y1)∈E×E,都有x1≤x1,y1≥y1,即(x1,y1)≤(x1,y1).

(ii)若(x1,y1)≤(x2,y2),且(x2,y2)≤(x3,y3),則有

故有x1≤x3,y1≥y3,即(x1,y1)≤(x3,y3).

(iii)若(x1,y1)≤(x2,y2),且(x2,y2)≤(x1,y1),則有

故有x1=x2,y1=y2,即(x1,y1)=(x2,y2).

由(i),(ii),(iii)可知E×E在定義1.5的半序下是半序空間.

引理1.2設B,C:[u0,v0]→E均為增算子,令A(x,y)=(Bx,Cy),則A在≤下是增算子;若B,C:[u0,v0]→E均為減算子,則A(x,y)=(Bx,Cy)在≤是減算子.

證明對任意x1,x2,y1,y2∈[u0,v0],若(x1,y1)≤(x2,y2),即x1≤x2,y1≥y2,又因為B,C為增算子,所以Bx1≤Bx2,Cy1≥Cy2,故有

則A為增算子.

若B,C均為減算子,當(x1,y1)≤(x2,y2)時,有Bx2≤Bx1,Cy2≥Cy1,即

則A為減算子.

2 主要結果

定理2.1設P是E中的錐,θ≤u≤v,θ≤r≤s,h∈P,且?M,L>0,使得v≤Mh, s≤Lh,那么,

(i)

(ii)d(dh(u,v),dh(r,s))=0,則u=v,r=s.

(iii)若θ≤u1≤u≤v,θ≤r1≤r≤s,則

(iv)

證明(i)因為dh(u,v)≥0,dh(r,s)≥0,所以

又因為dv(u,v)≤1,ds(r,s)≤1,所以

(ii)因為

要使等式成立,需滿足dh(u,v)=0,且dh(r,s)=0.又因為dh(u,v)=0,則u=v;dh(r,s)=0,則r=s,故有u=v,r=s.

(iii)因為當θ≤u1≤u≤v,θ≤r1≤r≤s時,有

所以

得證.

所以

又因為?k∈[0,1],有dv(kv,v)=1?k,ds(ks,s)=1?k,所以

得證.

定理2.2設P是E中的正規錐,

為增算子,其中B,C:[u0,v0]→E均為增算子,且滿足下列條件:

則A在[u0,v0]×[u0,v0]中有惟一不動點(x?,y?),且對任意的初值x0,y0∈[u0,v0],迭代序列xn=Bxn?1,yn=Cyn?1(n=1,2,………),必有xn→x?,yn→y?.

證明令

由條件(i),以及B,C是增算子可知,

由條件(ii),取k∈(0,1),可得

所以,當n→∞時,

即?ε>0,?N>0,使得當n>N時,有:

由(3)式可得:

由P的正規性,以及(4)式可得:

所以

由(1)和(2)式可得:

由(2)和(6)式可知,

由P的正規性,以及(5)式得

故{xn},{yn}都是Cauchy列.故存在(x?,y?)∈[u0,v0]×[u0,v0],使得

由(2)和(7)式可知,

定理2.3設P是E中的正規錐,θ≤u0≤v0,A(x,y)=(Bx,Cy):[u0,v0]×[u0,v0]→E×E為減算子,其中B,C:[u0,v0]→E均為減算子,且滿足下列條件:

(i)u0≤Bu0,Bv0≤v0,u0≤Cu0,Cv0≤v0;

(ii)?x,y,z,w∈[u0,v0],若x≤y,z≤w,則

則A在[u0,v0]×[u0,v0]中有惟一不動點(x?,y?),且對任意的初值x0,y0∈[u0,v0],迭代序列xn=Bxn?1,yn=Cyn?1(n=1,2,………),必有xn→x?,yn→y?.

證明令H(x,y)=A2(x,y)=(B2x,C2y),易驗證H:[u0,v0]×[u0,v0]→E×E為增算子,且

?x,y,z,w∈[u0,v0],若x≤y,z≤w,由條件(ii)可知:

故定理2.2的條件(i),(ii)均滿足,所以定理2.3的結論成立.

3 應用

研究Volterra型積分方程組解的問題:

其中,k(t,s)在[0,1]×[0,1]上非負連續,f1(t,u),f2(t,v)在[0,1]×R上非負且分別關于u,v單調遞增.設

定理3.1在以上條件下,方程組解的問題(9)有惟一的恒正解:

并且若(x0,y0)為初始點作迭代序列:

則(un(t),vn(t))在P×P上一致收斂于(u?(t),v?(t)).

證明?(u,v)∈P×P,令

設A(u,v)(t)=(Bu(t),Cv(t)).由假設條件易知:P×P→E×E滿足定理2.3的條件(i),(ii).則該定理的結論成立.

[1]欒輝.非緊非連續單調算子新不動點定理[J].南昌工程學院學報,2012,31(6):5-7.

[2]吳焱生.一類非緊非連續增算子新不動點定理及其應用[J].贛南師范學院學報,2004(6):14-16.

[3]孫經先.非線性泛函分析及應用[M].北京:科學出版社,2008.

[4]張金清,孫經先.一個非連續增算子不動點定理及其應用[J].應用數學學報,2001,24(1):34-43.

[5]Wu Y S,Li G Z.On the fi xed point existence and uniqueness theorems of mixed operators monotone operators and application[J].A.M.S.,2003,46(1):161-166.

[6]Hong S H.Fixed point for mixed monotone multivalued operators in Banach spaces with applications[J]. J.Math.Anal.Appl.,2008,337:333-342.

[7]郭大鈞.非線性分析中的半序方法[M].濟南:山東科學技術出版社,2000.

[8]顏蘇平,王申林,黃翔.一類新型混合單調算子的不動點定理及在工程科技中的應用[J].純粹數學與應用數學, 2010,26(3):403-408.

New fi xed point theorems of the monotone operator and its application

Wang Weina,Xue Xifeng
(School of Mathematics,Northwest University,Xi′an710127,China)

In order to explore the existence and uniqueness of monotone operator without compactness,continuity,and any convex conditions fi xed points in partially ordered Banach space,the paper uses the monotone iterative method and mathematical induction as well as the properties of the sequence gaps.Then we obtained the new fi xed point theorems of it.The results obtained generalize the related conclusion,so that it can be widely applicable scope,Meanwhile the conclusion is applied to solve the problem for Volterra integral equation group.

monotone operator,normal cone, fi xed point,order di ff erence pair,sequence gaps

O177.91

A

1008-5513(2014)03-0292-07

10.3969/j.issn.1008-5513.2014.03.011

2014-01-09.

陜西省自然科學基金(2012JM1017).

王維娜(1988-),碩士生,研究方向:非線性泛函分析.

2010 MSC:47H10

猜你喜歡
定義數學
永遠不要用“起點”定義自己
海峽姐妹(2020年9期)2021-01-04 01:35:44
定義“風格”
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
成功的定義
山東青年(2016年1期)2016-02-28 14:25:25
數學也瘋狂
修辭學的重大定義
當代修辭學(2014年3期)2014-01-21 02:30:44
山的定義
公務員文萃(2013年5期)2013-03-11 16:08:37
錯在哪里
主站蜘蛛池模板: 国产成人精品视频一区二区电影| 激情亚洲天堂| 成人在线不卡| 无码专区第一页| 欧美激情伊人| swag国产精品| 日本三级欧美三级| 黄片一区二区三区| 中文毛片无遮挡播放免费| 草草影院国产第一页| 91在线播放免费不卡无毒| 亚洲成人高清无码| 国产成人精品2021欧美日韩| 伊人中文网| 中美日韩在线网免费毛片视频| 久草热视频在线| 美女视频黄又黄又免费高清| 色香蕉影院| 亚洲日本中文综合在线| 国产色伊人| 亚洲欧美日韩久久精品| 欧美精品另类| 国产精品乱偷免费视频| 欧美国产日韩另类| 亚洲bt欧美bt精品| 老司机精品一区在线视频 | 国产91九色在线播放| 日韩亚洲综合在线| 中文字幕色站| 久久久四虎成人永久免费网站| 啪啪啪亚洲无码| 国产成人无码AV在线播放动漫| 精品国产香蕉在线播出| 日韩欧美国产成人| 成人精品亚洲| 亚洲性影院| aaa国产一级毛片| 成年网址网站在线观看| 日韩午夜福利在线观看| 国国产a国产片免费麻豆| 本亚洲精品网站| 欧美综合成人| a天堂视频在线| 欧美曰批视频免费播放免费| 婷婷久久综合九色综合88| 亚洲狼网站狼狼鲁亚洲下载| 国产大片喷水在线在线视频| 91啪在线| 凹凸精品免费精品视频| 美女视频黄又黄又免费高清| 成人国产小视频| 国产高清毛片| 亚洲一区二区三区国产精品 | 国产成人做受免费视频| 免费国产高清精品一区在线| 日本免费一级视频| 亚洲欧美日韩成人高清在线一区| 国产精品福利导航| 99人妻碰碰碰久久久久禁片| 天堂av高清一区二区三区| 亚洲欧美日韩综合二区三区| 蜜臀AV在线播放| 无码在线激情片| 亚洲伦理一区二区| 成人午夜视频网站| 亚洲欧美国产五月天综合| 久久久久免费精品国产| 国产精品亚洲日韩AⅤ在线观看| www.国产福利| 永久免费精品视频| 丁香五月婷婷激情基地| 99这里只有精品6| 狠狠色噜噜狠狠狠狠奇米777| 自拍偷拍一区| 亚洲人成电影在线播放| 美女潮喷出白浆在线观看视频| 成人在线第一页| 亚洲国产精品美女| 亚洲国产理论片在线播放| 大香伊人久久| 在线色国产| 日韩国产综合精选|