999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

非奇異H-矩陣新的含參數細分迭代判別法

2014-07-24 14:35:33肖麗霞張俊麗
純粹數學與應用數學 2014年4期
關鍵詞:數學

肖麗霞,張俊麗

(內蒙古民族大學數學學院,內蒙古 通遼 028043)

非奇異H-矩陣新的含參數細分迭代判別法

肖麗霞,張俊麗

(內蒙古民族大學數學學院,內蒙古 通遼 028043)

結合矩陣自身的元素,構造了含參數的迭代公式,進而細分了矩陣非對角占優行指標集.利用廣義嚴格α-對角占優矩陣與非奇異H-矩陣的關系,給出了非奇異H-矩陣一組新的細分迭代判定準則,推廣和改進了已有的結果,通過數值算例說明了結果的優越性.

非奇異H-矩陣;α-對角占優矩陣;不可約;非零元素鏈

1 引言與符號

非奇異H-矩陣是一類應用廣泛的特殊矩陣,在計算數學、矩陣理論、控制論等領域發揮著重要作用.對非奇異H-矩陣判定方法的研究,近年來引起許多數學工作者的關注,并取得了一系列的研究成果[19].本文給出了一類新的含參數細分迭代判別法,對文獻[1-5]的結果進行了推廣和改進.

為敘述方便,引進下列記號和定義,設A=(aij)∈Cn×n為n階復方陣,N?{1,2,···,n}, α∈[0,1].記

顯然有δk+1,i≤rk+1≤rk≤r1<1(?k∈Z+,i∈N2).

定義 1.1[6]設A=(aij)∈Cn×n,若|aii|≥(>)Ri(A)(?i∈N),則稱A為(嚴格)對角占優矩陣,記為A∈D0(A∈D);若存在正對角矩陣X使得AX∈D,則稱A為廣義嚴格對角占優矩陣,記為A∈D?.

定義 1.2[6]設A=(aij)∈Cn×n,若存在α∈[0,1],使得

則稱A為α-(嚴格)對角占優矩陣,記為A∈D0(α)(A∈D(α));若存在正對角矩陣X 使得AX∈D(α),則稱A為廣義嚴格α-對角占優矩陣,記為A∈D?(α).

2 主要結果

引理 2.1 [7]設A=(aij)∈Cn×n,若A∈D(α),則A∈D?.

引理2.2 [8]設A=(aij)∈Cn×n,若存在正對角矩陣X,使AX∈D?,則A∈D?.

定理 2.1設A=(aij)∈Cn×n,且N′1,N′2/=?,若存在k∈Z+(?i∈N′1,?j∈N′2),滿足:

則A為非奇異H-矩陣.

證明令

因為0

取正對角矩陣X1=diag(d1,d2,···,dn),并記B=AX1,其中

3) ?i∈N2,可得

綜上所述,有|bii|>αRi(B)+(1?α)Qi(B)(?i∈N)成立,則B∈D(α),由引理2.1知B=AX1∈D?,其中X1為正對角矩陣,根據引理2.2,則A∈D?,因此矩陣A為非奇異H-矩陣.

引理 2.3 [7]設A=(aij)∈Cn×n,若A∈D0(α),A不可約,且N2/=?,則A∈D?.

定理 2.2設A=(aij)∈Cn×n,且A不可約,若存在滿足:

且至少有一嚴格不等式成立,則A為非奇異H-矩陣.

證明如同定理2.1的證明,記Mi,mj,則因為0

取正對角矩陣X2=diag(d1,d2,···,dn),并記B=AX2,其中

類似于定理2.1的證明過程,可得|bii|≥αRi(B)+(1?α)Qi(B)(?i∈N),且至少有一個嚴格不等式成立.由A不可約,可得B不可約,則B為不可約α-對角占優矩陣,由引理2.3可知B=AX2∈D?,其中X2為正對角矩陣,根據引理2.1,則A∈D?,因此矩陣A為非奇異H-矩陣.

騰訊董事會主席馬化騰憑借328億美元的身家蟬聯榜單第二名,但他的財富縮水了62億美元。去年的首富、中國恒大董事局主席許家印的排名跌至第三名。許家印的身家為308億美元,下降28%,折合約117億美元,他是今年財富值降低最多的富豪。

引理 2.4 [7]設 A=(aij)∈Cn×n,若 A ∈D0(α),并且 ?i∈N3,都有非零元素鏈aik1ak1k2...akpj,使得j∈N2,則A∈D?.

定理 2.3設A=(aij)∈Cn×n,且N′1,N′2/=?,若存在k∈Z+(?i∈N′1,?j∈N′2),滿足:

證明如同定理2.2的證明,可得|bii|≥αRi(B)+(1?α)Qi(B)(?i∈N).其中

成立;

成立,則B為非零元素鏈對角占優矩陣.根據引理2.4,B=AX2∈D?,其中X2為正對角矩陣.根據引理2.1,則A∈D?,因此矩陣A為非奇異H-矩陣.

3 數值算法

輸入:已知矩陣A,參數α,迭代次數k.

輸出:正對角矩陣X.

1)若aii=0(?i∈N)或N2=?,輸出:矩陣A不是非奇異H-矩陣”,停止;若N1=?,輸出:矩陣A是非奇異H-矩陣”,停止;否則執行2);

2)若N1/=?且N2/=?,

成立,則輸出“矩陣A是非奇異H-矩陣”,停止;否則輸出“不確定矩陣A是否為非奇異H-矩陣”,停止.

4 數值算例

例4.1設

取α=0.5,則N1={1,2,3},N2={4,5},令k=1,可得r0=1,r1=0.5,δ2,4=0.45, δ2,5=0.2375,r2=0.45,則取i=3,j=1,則

取i=3,j=2,則

可見矩陣A滿足定理2.1的條件,因此矩陣A為非奇異H-矩陣.但

所以矩陣A不能由文獻[1]中定理2判定.又因為

所以矩陣A不能由文獻[2]中定理1判定.又因為

所以矩陣A不能由文獻[3]中定理1判定.又因為

所以矩陣A不能由文獻[4]中定理1判定.經驗證,對α=0.1,0.2,···,1.0,矩陣A不能由文獻[5]中定理1判定.

[1]黃廷祝.非奇H矩陣的簡捷判據[J].計算數學,1993,15(3):318-328.

[2]高中喜,黃廷祝,王廣彬.非奇H-矩陣的充分條件[J].數學物理學報:A輯,2005,25(3):409-413.

[3]黃澤軍,劉建州.非奇異H矩陣的一類新迭代判別法[J].工程數學學報,2008,25(5):939-942.

[4]孫德淑.非奇異H-矩陣的判定準則[J].溫州大學學報,2009,30(3):18-21.

[5]尹如軍,徐仲,陸全.非奇H-矩陣的細分迭代判別準則[J].工程數學學報,2013,30(3):433-441.

[6]孫玉祥.廣義對角占優矩陣的充分條件[J].高等學校計算數學學報,1997,19(3):216-223.

[7]Sun Yuxiang.An improvement on a theorem by Ostrowski and its applications[J].Northeastern Math.J., 1991,7(4):497-502.

[8]Berman A,Plemmons R J.Nonnegative Matrices in the Mathematical Sciences[M].Philadephia:SIAM Press,1994.

[9]韓貴春,錢茜,張俊麗.Ostrowski定理的推廣與非奇異 H-矩陣的實用判定 [J].純粹數學與應用數學, 2013,29(6):601-608.

New subdivided and iterative criteria with parameter for nonsingular H-matrices

Xiao Lixia,Zhang Junli
(School of Mathematics,Inner Mongolia University for the Nationalities,Tongliao 028043,China)

Associating the elements of the matrix,the iterative formulas with parameter are constructed,and then the index set of non diagonally dominant rows in a square matrix is subdivided.According to the relations between generalized α-diagonally dominant matrices and nonsingular H-matrices,a set of new subdividing and iterative criteria for nonsingular H-matrices is obtained,which extend and improve some related results.A numerical example is used to show the advantages of the results.

nonsingular H-matrix,α-diagonally dominant matrix,irreducible,non-zero elements chain

O151.21

A

1008-5513(2014)004-0386-07

10.3969/j.issn.1008-5513.2014.04.008

2014-05-25.

內蒙古自治區高等學校科學技術研究項目(NJZY13159).

肖麗霞(1980-),碩士,講師,研究方向:數值代數.

2010 MSC:15A57

猜你喜歡
數學
中等數學
中等數學(2021年4期)2021-12-04 13:57:52
中等數學
中等數學(2021年7期)2021-12-03 04:01:41
中等數學
中等數學(2021年1期)2021-12-02 03:08:08
中等數學
中等數學(2021年3期)2021-12-02 00:28:14
中等數學
中等數學(2020年11期)2020-12-18 01:23:21
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數學就難過
數學也瘋狂
主站蜘蛛池模板: 91福利免费| 欧美午夜网站| 精品国产免费观看一区| 2021国产精品自拍| 免费人成又黄又爽的视频网站| 国产精品无码AV片在线观看播放| 777国产精品永久免费观看| 狠狠干综合| 日本高清在线看免费观看| 五月天婷婷网亚洲综合在线| 爱做久久久久久| 美女高潮全身流白浆福利区| 亚洲自拍另类| vvvv98国产成人综合青青| 国产综合亚洲欧洲区精品无码| 亚洲无码日韩一区| av在线无码浏览| 亚洲欧美成人在线视频| 99精品热视频这里只有精品7| 国产精品无码AⅤ在线观看播放| 成人一级黄色毛片| av免费在线观看美女叉开腿| 91福利免费| 亚洲香蕉久久| 日韩福利视频导航| 日韩色图区| 91在线丝袜| 免费看一级毛片波多结衣| 怡红院美国分院一区二区| 日本www在线视频| 欧美精品高清| 精品乱码久久久久久久| 无码aⅴ精品一区二区三区| 亚洲IV视频免费在线光看| 日韩欧美国产中文| 精品国产美女福到在线直播| 亚洲大尺码专区影院| 91成人在线观看| 婷婷色婷婷| 99re这里只有国产中文精品国产精品 | 欧美高清三区| 国产sm重味一区二区三区| 欧美日韩理论| 国产特级毛片aaaaaa| 又粗又大又爽又紧免费视频| 久久毛片网| 国产欧美日韩另类精彩视频| 欧美a在线看| 91亚洲免费| 欧美视频在线不卡| jijzzizz老师出水喷水喷出| 老司机午夜精品网站在线观看| 无码电影在线观看| AV色爱天堂网| 国产成人盗摄精品| 亚洲二三区| 亚洲成人高清无码| 日韩欧美视频第一区在线观看| 久久这里只有精品66| 国产免费一级精品视频| AV不卡国产在线观看| 日韩精品亚洲人旧成在线| 久久成人免费| 成人小视频在线观看免费| 亚洲—日韩aV在线| 激情综合图区| 麻豆精品在线播放| 国产成人精品午夜视频'| 久久青草免费91线频观看不卡| 丰满人妻久久中文字幕| 亚洲有无码中文网| 国产丰满大乳无码免费播放| 欧美一区福利| 亚洲国产精品日韩av专区| 久久精品一品道久久精品| 国产不卡国语在线| 思思热在线视频精品| 亚洲国产高清精品线久久| 久久国产亚洲欧美日韩精品| 国产精品免费福利久久播放| 91国内在线视频| 波多野结衣一区二区三区四区视频 |