999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

非奇異H-矩陣新的含參數細分迭代判別法

2014-07-24 14:35:33肖麗霞張俊麗
純粹數學與應用數學 2014年4期
關鍵詞:數學

肖麗霞,張俊麗

(內蒙古民族大學數學學院,內蒙古 通遼 028043)

非奇異H-矩陣新的含參數細分迭代判別法

肖麗霞,張俊麗

(內蒙古民族大學數學學院,內蒙古 通遼 028043)

結合矩陣自身的元素,構造了含參數的迭代公式,進而細分了矩陣非對角占優行指標集.利用廣義嚴格α-對角占優矩陣與非奇異H-矩陣的關系,給出了非奇異H-矩陣一組新的細分迭代判定準則,推廣和改進了已有的結果,通過數值算例說明了結果的優越性.

非奇異H-矩陣;α-對角占優矩陣;不可約;非零元素鏈

1 引言與符號

非奇異H-矩陣是一類應用廣泛的特殊矩陣,在計算數學、矩陣理論、控制論等領域發揮著重要作用.對非奇異H-矩陣判定方法的研究,近年來引起許多數學工作者的關注,并取得了一系列的研究成果[19].本文給出了一類新的含參數細分迭代判別法,對文獻[1-5]的結果進行了推廣和改進.

為敘述方便,引進下列記號和定義,設A=(aij)∈Cn×n為n階復方陣,N?{1,2,···,n}, α∈[0,1].記

顯然有δk+1,i≤rk+1≤rk≤r1<1(?k∈Z+,i∈N2).

定義 1.1[6]設A=(aij)∈Cn×n,若|aii|≥(>)Ri(A)(?i∈N),則稱A為(嚴格)對角占優矩陣,記為A∈D0(A∈D);若存在正對角矩陣X使得AX∈D,則稱A為廣義嚴格對角占優矩陣,記為A∈D?.

定義 1.2[6]設A=(aij)∈Cn×n,若存在α∈[0,1],使得

則稱A為α-(嚴格)對角占優矩陣,記為A∈D0(α)(A∈D(α));若存在正對角矩陣X 使得AX∈D(α),則稱A為廣義嚴格α-對角占優矩陣,記為A∈D?(α).

2 主要結果

引理 2.1 [7]設A=(aij)∈Cn×n,若A∈D(α),則A∈D?.

引理2.2 [8]設A=(aij)∈Cn×n,若存在正對角矩陣X,使AX∈D?,則A∈D?.

定理 2.1設A=(aij)∈Cn×n,且N′1,N′2/=?,若存在k∈Z+(?i∈N′1,?j∈N′2),滿足:

則A為非奇異H-矩陣.

證明令

因為0

取正對角矩陣X1=diag(d1,d2,···,dn),并記B=AX1,其中

3) ?i∈N2,可得

綜上所述,有|bii|>αRi(B)+(1?α)Qi(B)(?i∈N)成立,則B∈D(α),由引理2.1知B=AX1∈D?,其中X1為正對角矩陣,根據引理2.2,則A∈D?,因此矩陣A為非奇異H-矩陣.

引理 2.3 [7]設A=(aij)∈Cn×n,若A∈D0(α),A不可約,且N2/=?,則A∈D?.

定理 2.2設A=(aij)∈Cn×n,且A不可約,若存在滿足:

且至少有一嚴格不等式成立,則A為非奇異H-矩陣.

證明如同定理2.1的證明,記Mi,mj,則因為0

取正對角矩陣X2=diag(d1,d2,···,dn),并記B=AX2,其中

類似于定理2.1的證明過程,可得|bii|≥αRi(B)+(1?α)Qi(B)(?i∈N),且至少有一個嚴格不等式成立.由A不可約,可得B不可約,則B為不可約α-對角占優矩陣,由引理2.3可知B=AX2∈D?,其中X2為正對角矩陣,根據引理2.1,則A∈D?,因此矩陣A為非奇異H-矩陣.

騰訊董事會主席馬化騰憑借328億美元的身家蟬聯榜單第二名,但他的財富縮水了62億美元。去年的首富、中國恒大董事局主席許家印的排名跌至第三名。許家印的身家為308億美元,下降28%,折合約117億美元,他是今年財富值降低最多的富豪。

引理 2.4 [7]設 A=(aij)∈Cn×n,若 A ∈D0(α),并且 ?i∈N3,都有非零元素鏈aik1ak1k2...akpj,使得j∈N2,則A∈D?.

定理 2.3設A=(aij)∈Cn×n,且N′1,N′2/=?,若存在k∈Z+(?i∈N′1,?j∈N′2),滿足:

證明如同定理2.2的證明,可得|bii|≥αRi(B)+(1?α)Qi(B)(?i∈N).其中

成立;

成立,則B為非零元素鏈對角占優矩陣.根據引理2.4,B=AX2∈D?,其中X2為正對角矩陣.根據引理2.1,則A∈D?,因此矩陣A為非奇異H-矩陣.

3 數值算法

輸入:已知矩陣A,參數α,迭代次數k.

輸出:正對角矩陣X.

1)若aii=0(?i∈N)或N2=?,輸出:矩陣A不是非奇異H-矩陣”,停止;若N1=?,輸出:矩陣A是非奇異H-矩陣”,停止;否則執行2);

2)若N1/=?且N2/=?,

成立,則輸出“矩陣A是非奇異H-矩陣”,停止;否則輸出“不確定矩陣A是否為非奇異H-矩陣”,停止.

4 數值算例

例4.1設

取α=0.5,則N1={1,2,3},N2={4,5},令k=1,可得r0=1,r1=0.5,δ2,4=0.45, δ2,5=0.2375,r2=0.45,則取i=3,j=1,則

取i=3,j=2,則

可見矩陣A滿足定理2.1的條件,因此矩陣A為非奇異H-矩陣.但

所以矩陣A不能由文獻[1]中定理2判定.又因為

所以矩陣A不能由文獻[2]中定理1判定.又因為

所以矩陣A不能由文獻[3]中定理1判定.又因為

所以矩陣A不能由文獻[4]中定理1判定.經驗證,對α=0.1,0.2,···,1.0,矩陣A不能由文獻[5]中定理1判定.

[1]黃廷祝.非奇H矩陣的簡捷判據[J].計算數學,1993,15(3):318-328.

[2]高中喜,黃廷祝,王廣彬.非奇H-矩陣的充分條件[J].數學物理學報:A輯,2005,25(3):409-413.

[3]黃澤軍,劉建州.非奇異H矩陣的一類新迭代判別法[J].工程數學學報,2008,25(5):939-942.

[4]孫德淑.非奇異H-矩陣的判定準則[J].溫州大學學報,2009,30(3):18-21.

[5]尹如軍,徐仲,陸全.非奇H-矩陣的細分迭代判別準則[J].工程數學學報,2013,30(3):433-441.

[6]孫玉祥.廣義對角占優矩陣的充分條件[J].高等學校計算數學學報,1997,19(3):216-223.

[7]Sun Yuxiang.An improvement on a theorem by Ostrowski and its applications[J].Northeastern Math.J., 1991,7(4):497-502.

[8]Berman A,Plemmons R J.Nonnegative Matrices in the Mathematical Sciences[M].Philadephia:SIAM Press,1994.

[9]韓貴春,錢茜,張俊麗.Ostrowski定理的推廣與非奇異 H-矩陣的實用判定 [J].純粹數學與應用數學, 2013,29(6):601-608.

New subdivided and iterative criteria with parameter for nonsingular H-matrices

Xiao Lixia,Zhang Junli
(School of Mathematics,Inner Mongolia University for the Nationalities,Tongliao 028043,China)

Associating the elements of the matrix,the iterative formulas with parameter are constructed,and then the index set of non diagonally dominant rows in a square matrix is subdivided.According to the relations between generalized α-diagonally dominant matrices and nonsingular H-matrices,a set of new subdividing and iterative criteria for nonsingular H-matrices is obtained,which extend and improve some related results.A numerical example is used to show the advantages of the results.

nonsingular H-matrix,α-diagonally dominant matrix,irreducible,non-zero elements chain

O151.21

A

1008-5513(2014)004-0386-07

10.3969/j.issn.1008-5513.2014.04.008

2014-05-25.

內蒙古自治區高等學校科學技術研究項目(NJZY13159).

肖麗霞(1980-),碩士,講師,研究方向:數值代數.

2010 MSC:15A57

猜你喜歡
數學
中等數學
中等數學(2021年4期)2021-12-04 13:57:52
中等數學
中等數學(2021年7期)2021-12-03 04:01:41
中等數學
中等數學(2021年1期)2021-12-02 03:08:08
中等數學
中等數學(2021年3期)2021-12-02 00:28:14
中等數學
中等數學(2020年11期)2020-12-18 01:23:21
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數學就難過
數學也瘋狂
主站蜘蛛池模板: 欧美性精品| 国产精品99久久久| 国产在线视频导航| 国产精品亚洲日韩AⅤ在线观看| 欧美在线网| 免费播放毛片| 茄子视频毛片免费观看| 欧美三级视频网站| 色婷婷成人| 欧美成人在线免费| 久久 午夜福利 张柏芝| 国产特级毛片aaaaaaa高清| 国产亚洲男人的天堂在线观看| 91亚洲精品国产自在现线| 亚洲天堂视频在线观看免费| 国产精品免费电影| 精品少妇人妻一区二区| 亚洲成人77777| 国产精品视频3p| 国产成人精品视频一区视频二区| 久久综合结合久久狠狠狠97色| 色偷偷男人的天堂亚洲av| 狠狠做深爱婷婷综合一区| 美女被操91视频| 久久香蕉国产线看观看精品蕉| 2021天堂在线亚洲精品专区| 伊人久久久久久久| 国产精品无码一区二区桃花视频| 国产va在线观看免费| 自偷自拍三级全三级视频| 国产网站免费| 国产人成网线在线播放va| 欧美va亚洲va香蕉在线| 91精品久久久久久无码人妻| 日本欧美精品| 日韩区欧美国产区在线观看| 成人国产小视频| 亚洲高清资源| 制服丝袜一区| 呦女亚洲一区精品| 亚洲大学生视频在线播放| 成人毛片免费在线观看| 国产毛片基地| 国产性猛交XXXX免费看| 国产成+人+综合+亚洲欧美 | 色综合日本| 国产浮力第一页永久地址 | 国产精品无码AV中文| 免费AV在线播放观看18禁强制| 视频二区中文无码| 亚洲天堂视频网站| 国内老司机精品视频在线播出| 九九热这里只有国产精品| 国产91在线免费视频| 尤物成AV人片在线观看| 亚洲国产成人在线| 欧美中文字幕无线码视频| 精品无码日韩国产不卡av| 久久熟女AV| 国产精品无码久久久久AV| 国产成人久视频免费| 激情综合五月网| 在线精品视频成人网| 无码中文字幕加勒比高清| 亚洲精品无码久久久久苍井空| 夜精品a一区二区三区| 欧美色图久久| 综合人妻久久一区二区精品 | 8090成人午夜精品| 中文字幕乱码中文乱码51精品| 久久久噜噜噜| 精品99在线观看| 五月天在线网站| 亚洲国产综合精品中文第一 | 午夜免费视频网站| 欧美精品1区2区| 亚洲中文精品久久久久久不卡| 伊人中文网| 精品国产免费观看| 亚洲国产在一区二区三区| 高潮毛片无遮挡高清视频播放| 99精品福利视频|