周 良,羅高駿
(湖北師范學院 數學與統計學院, 湖北 黃石 435002)
兩個相乘可交換的廣義投影算子和超廣義投影算子線性組合的 M-P逆
周 良,羅高駿
(湖北師范學院 數學與統計學院, 湖北 黃石 435002)
研究了兩個相乘可交換的廣義投影算子和超廣義投影算子線性組合的M-P逆,給出了兩個相乘可交換廣義投影算子和超廣義投影算子A,B的線性組合aA+bB的M-P逆的計算公式.
廣義投影算子;超廣義投影算子;M-P逆
矩陣的廣義逆是矩陣理論中一項極為重要的理論,近年來,關于廣義投影算子和超廣義投影算子的性質的研究迅速發展.在[1]中Groβ J ,Trenkler G首先提出了廣義投影算子和超廣義投影算子的概念,并研究了它們的基本性質.近年,廣義投影算子和超廣義投影算子的研究成為廣義算子論的熱點;廣義投影算子的線性組合的一些特征在[3]、[6]中被研究;在[4]、[7]中Stewart G W,Baksalary O M,Benitez J找到廣義投影算子和超廣義投影算子的一些有趣的性質;在[2]、[8]中Baksalary J K,Baksalary O M得到廣義投影算子和超廣義投影算子的進一步結果;而在最近的研究中([9]),Tosic M,Cvetkovic-Ilic D S給出了兩個相乘可換的廣義投影算子和超廣義投影算子線性組合aAk+bBl逆的計算公式.本文在這些結論的基礎上,根據矩陣和廣義投影算子的性質([10]、[11])給出了兩個相乘可交換的廣義投影算子和超廣義投影算子A,B的線性組合aA+bB的M-P逆的計算公式.
設A∈Cm×n,若X∈Cn×m使得以下四個矩陣方程成立
AXA=A,XAX=X,(AX)*=AX,(XA)*=XA
則稱X是A的M-P逆.用A+來表示A的M-P逆.容易證明,A的M-P逆存在且唯一.(參見[10])
為了證明的需要,首先給出以下引理.


引理3[10]n階正規矩陣A是可酉對角化矩陣,且對角元是A的特征值.兩個正規矩陣可同時酉對角化當且僅當它們相乘可交換.





(1)
那么
A2=U(Ir1?ε2Ir2?εIr3?0)U*,A3=U(Ir1?Ir2?Ir3?0)U*


(2)
由(1)式和引理3可得
(aI+bA)+=(U(aIr1?aIr2?aIr3?aIn-r)U*+U(bIr1?bεIr2?bε2Ir3?0)U*)+=

(3)
由a3+b3=(a+b)×(a2-ab+b2),ε3=1 可得

(4)
由(1),(2),(3),(4)式,通過簡單的計算可得出


證明 當a3+b3=0時,可分為三種情況.



再通過簡單的計算可得

將定理1中的aI+bA變成aI+bA2和aI+bA3時,只需將結果中A換成A2和A3,再由A4=A可得以下兩個推論.








由AB=BA可得
B=U(B11?B22?B33?B44)U*
(5)

由(2)式和(5)可得


(6)
因為(aA+bB)+=U((aI+bB11)+?(aεI+bB22)+?(aε2I+bB33)+?(bB44)+)U*,所以由引理4和定理1以及(6)式通過簡單的計算可得出


證明 與注1的證明類似,分成三種情況討論,通過計算即可得到結果.





(aA+bB)T(aA+bB)=(A3+B3-A3B3)(aA+bB)=(aA+bB)
T(aA+bB)T+(A3+B3-A3B3)T=T
((aA+bB)T)*=(A3+B3-A3B3)*=(A3+B3-A3B3)=(aA+bB)T
(T(aA+bB))*=(A3+B3-A3B3)*=(A3+B3-A3B3)=T(aA+bB)









[1]Groβ J ,Trenkler G.Generalized and Hypergenralized Projectors[J]. Linear Algebra and its Applications. 1997,264:463~474.
[2]Baksalary J K,Baksalary O M.Further properties on generalized and hypergeneralized projecter[J]. Linear Algebra and its Applications. 2004,389:295~303.
[3]benitez J,Thome N.Characterizations and liner combinations of k-generalized projectors[J]. Linear Algebra and its Applications. 2005,410:150~159.
[4]Stewart G W.A note on generalized and hypergeneralized projectors[J]. Linear Algebra and its Applications. 2006,412:408~411.
[5]Baksalary J K,Baksalary O M, Groβ J .On some linear combinations of hypergeneralized projector[J].Linear Algebra and its Applications. 2006,413:264~273.
[6]Lebtahi L,Thome N.A note on k- generalized projectors[J]. Linear Algebra and its Applications. 2007,420:572~575.
[7]Baksalary O M,Benitez J.On linear combinations of two commuting hypergeneralized projectors[J].Computers and Mathematics with Applications ,2008,56:2481~2489.
[8]Baksalary J K,Baksalary O M,G trenkler.Further results on generalized and hypergeneralized projecter[J]. Linear Algebra and its Applications. 2008,429:1038~1050.
[9]Tosic M,Cvetkovic-Ilic D S.The invertibility of the difference and the sum of commuting generalized and hypergeneralized projector[J].Liner and Multiliner Algebra.2013,61(4):482~493.
[10]Horn R A,Johnson C R.矩陣分析[M].北京:人民郵電出版社,2005.
[11]王松桂,楊振海.廣義逆及其應用[M].北京:北京工業大學出版社,1996.
TheM-Pinverseoflinearcombinationoftwomutuallycommutinggeneralizedandhypergeneralizedprojector
ZHOU Liang, LUO Gao-jun
(College of Mathematics Science,Hubei Normal University, Huangshi 435002,China)
In this paper, theM-Pinverse of linear combination of two mutually commuting generalized and hypergeneralized projector has been searched. Give the formulae ofM-Pinverse of linear combinationaA+bBof two mutually commuting generalized projector and hypergeneralizedA,B.
generalized projector; hypergeneralized projector;M-Pinverse
2013—12—26
周良(1989— ),男,湖北大冶人,碩士研究生,主要研究方向為矩陣分析.
O151.21
A
1009-2714(2014)03- 0074- 05
10.3969/j.issn.1009-2714.2014.03.017