999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A Survey on the Sharp Blow-up Criteria for a Class of Nonlinear Schr?dinger Equations

2014-10-09 03:39:14ZHANGJianZHUShihui

ZHANG Jian, ZHU Shihui

(College of Mathematics and Software Science,Sichuan Normal University,Chengdu 610066,Sichuan)

1 Introduction

In this paper,we consider the following Cauchy problem of nonlinear Schr?dinger equations

In fact,equation(1)is proposed by Davey and Stewartson in 1974 and is also called Davey-Stewartson system(see[1]).In fluid mechanics,Davey-Stewartson system models the evolution of weakly nonlinear water wave having one predominant direction of travel,and the wave amplitude is modulated slowly in two horizontal directions.

When the singular integral operatorEis replaced by the harmonic potential,i.e.E=-|x|2,equation(1)is called the nonlinear Schr?dinger equation with a harmonic potential.This equation models the remarkable Bose-Einstein condensate with attractive inter-particle interactions under a magnetic trap(see[2-4]).Physicists and mathematicians are very interested in studying dynamics of this equation(see[2,4-5]).Oh[6]established the local well-posedness in the corresponding energy fieldΣ={u∈H1(RN)||x|u∈L2(RN)}.Cazenave[5],Zhang[3,7],Shu and Zhang[8],Chen and Zhang[9],Carles[10]studied the existence of blow-up solutions and sharp thresholds of blow-up and global existence.Carles[10]also gave the transformation which reveals the relationship between the nonlinear Schr?dinger equation with and without a harmonic potential.Recently,Merle and Rapha?l[11-13]obtained a large body of breakthrough work for the super-critical mass blow-up solutions with the help of the Spectral Properties[12],such as sharp blow-up rates,profiles of blow-up solutions,etc.Then,using this transformation proposed by Carles[10],Zhang,Li and Wu[14-16]obtained some dynamical properties of blowup solutions such as sharp blow-up rates,L2-concentration and rate ofL2-concentration etc.Zhu,Zhang and Li[17]obtained the limiting profile of blow-up solutions in the natural energy fieldΣ={u∈H1(RN)||x|u∈L2(RN)}.

For the Cauchy problem(1)~(2),Ghidaglia and Saut[18],Guo and Wang[19]established the local well-posedness in the energy spaceH1(RN)forN=2 andN=3 respectively(see[5,20]for a review).Cipolatti[21],Zhang and Zhu[22]studied the existence of the standing waves.Cipolatti[23],Ohta[24-25],Gan and Zhang[26]investigated the stability and instability of standing waves.Ghidaglia and Saut[18],Guo and Wang[19]studied the existence of blow-up solutions,and Wang and Guo[27]further discussed the scattering of global solutions.Ozawa[28]constructed some exact blow-up solutions.Richards[29], Papanicolaou et al[30],Gan and Zhang[26,31], Shu and Zhang[32],Zhang and Zhu[22]studied the sharp conditions of blow-up and global existence for the Cauchy problem(1)~(2).Li et al[33],Richards[29]obtained the mass-concentration properties of the blow-up solutions inL2-critical case whenN=2.

In the present paper,we are focusing on the sharp criteria of blow-up and global existence for the Cauchy problem(1)~(2).First,whenN=2,3,by constructing a type of cross-constrained variational problem and establishing so-called cross-constraint manifolds of the evolution flow,a sharp threshold for blow-up and global existence of the solutions to the Cauchy problemis given.Secondly,forN=2,by using the profile decomposition of bounded sequences inH1,a precisely sharp criterion of the blow-up solutions for the Cauchy problem(1)~(2)with 3≤p<+∞ is given.Thirdly,forN=3,by using the profile decomposition of bounded sequences inH1,a precisely sharp threshold of the blow-up solutions for the Cauchy problem(1)~(2)withis given.We should point out that most of the above results has been published.There are two main aims of this survey.One is to give a collection about the sharp criteria of blow-up and global existence for equation(1),and it is convenient for readers to refer.The other is to give main sketch to obtain the above sharp criteria,and it may be quite useful for students to handle this method.

2 Preliminaries

The functionalH(u(t))is well-defined according to the Sobolev embedding theorem and the properties of the singular operatorE.Ghidaglia and Saut[18],Guo and Wang[19]established the local well-posedness of the Cauchy problem(1)~(2)in energy spaceH1.

Proposition 2.1LetN∈{2,3}andu0∈H1.There exists a unique solutionu(t,x)of the Cauchy problem(1)~(2)on the maximal time[0,T)such thatu(t,x)∈C([0,T);H1)and eitherT=+∞(global existence),orT<+∞and=+∞ (blow-up).Furthermore,for allt∈[0,T),u(t,x)satisfies the following conservation laws.

(i)Conservation of mass‖u(t)‖2=‖u0‖2.

(ii)Conservation of energyH(u(t))=H(u0).

By some basic calculations,we have the following proposition(see Ohta[25]).

3 Cross-constrained Variational Methods and Sharp Criteria

4 Profile Decomposition and Sharp Criteria for N=2

5 Profile Decomposition and Sharp Criteria for N=3

First,using the profile decomposition of bounded sequence inH1,we compute the best constant of a generalized Gagliardo-Nirenberg inequality in dimension three.More precisely,we have the following theorems.

(i)If‖?u0‖2<y0,then the solutionu(t,x)of the Cauchy problem(1)~(2)exists globally.Moreover,for all timet,u(t,x)satisfies

(ii)If‖?u0‖2>y0and|x|u0∈L2,then the solutionu(t,x)of the Cauchy problem(1)~(2)blows up in finite timeT<+∞,wherey0is the unique positive solution of the equationg(y)=0 andg(y)is defined in(27).

[1]Davey A,Stewartson K.On three-dimensional packets of surfaces waves[J].Proc Royal Soc,1974,A338:101-110.

[2]Wadati M,Tsurumi T.Critical number of atoms for the magnetically trapped Bose-Einstein condensate with negative s-wave scattering length[J].Phys Lett,1998,A247:287-293.

[3]Zhang J.Stability of attractive Bose-Einstein condensate[J].J Stat Phys,2000,10(1):731-746.

[4]Bradley C C,Sackett C A,Hulet R G.Bose-Einstein condensation of lithium:Observation of limited condensate number[J].Phys Rev Lett,1997,78:985-989.

[5]Cazenave T.Semilinear Schr?dinger equations[C]//Courant Lecture Notes in Mathematics,10.NYU:CIMS,AMS,2003.

[6]Oh Y G.Cauchy problem and Ehrenfest's law of nonlinear Schr?dinger equations with potentials[J].J Diff Eqns,1989,81:255-274.

[7]Zhang J.Sharp threshold for blowup and global existence in nonlinear Schr?dinger equations under a harmonic potential[J].Commun PDE,2005,30:1429-1443.

[8]Shu J,Zhang J.Nonlinear Schr?dinger equation with harmonic potential[J].J Math Phys,2006,47:063503-1-6.

[9]Chen G G,Zhang J.Sharp threshold of global existence for nonlinear Gross-Pitaevskii equation in RN[J].IMA J Appl Math,2006,71:232-240.

[10]Carles R.Critical nonlinear Schr?dinger equations with and without harmonic potential[J].Math Models Methods Appl Sci,2002,12:1513-1523.

[11]Merle F,Rapha?l P.On universality of blow-up profile forL2critical nonlinear Schr?dinger equation[J].Invent Math,2004,156:565-672.

[12]Merle F,Rapha?l P.Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schr?dinger equation[J].Ann Math,2005,16:157-222.

[13]Merle F,Rapha?l P.On a sharp lower bound on the blow-up rate for theL2-critical nonlinear Schr?dinger equation[J].J Amer Math Soc,2006,19:37-90.

[14]Li X G,Zhang J.Limit behavior of blow-up solutions for critical nonlinear Schr?dinger equation with harmonic potential[J].Diff Integral Eqns,2006,19:761-771.

[15]Li X G,Zhang J,Wu Y H.Mathematical analysis of the collapse in Bose-Einstein Condensate[J].Acta Math Sci,2009,B29:56-64.

[16]Zhang J,Li X G,Wu Y H.Remarks on the blow-up rate for critical nonlinear Schr?dinger equation with harmonic potential[J].Appl Math Comput,2009,208:389-396.

[17]Zhu S H,Zhang J,Li X G.Limiting profile of blow-up solutions for the Gross-Pitaevskii equation[J].Sci China:Math,2009,A52:1017-1030.

[18]Ghidaglia J M,Saut J C.On the initial value problem for the Davey-Stewartson systems[J].Nonlinearity,1990,3:475-506.

[19]Guo B L,Wang B X.The Cauchy problem for Davey-Stewartson systems[J].Commun Pure Appl Math,1999,52:1477-1490.

[20]Sulem C,Sulem P L.The nonlinear Schr?dinger equation:Self-focusing and wave collapse[C]//Appl Math Sci,139.New York:Springer-Verlag,1999.

[21]Cipolatti R.On the existence of standing waves for a Davey-Stewartson system[J].Commun PDE,1992,17:967-988.

[22]Zhang J,Zhu S H.Sharp blow-up criteria for the Davey-Stewartson system in R3[J].Dynamics PDE,2011,8:239-260.

[23]Cipolatti R.On the instability of ground states for a Davey-Stewartson system[J].Ann Inst Henri Poincaré:Phys Theor,1993,58:85-104.

[24]Ohta M.Stability of standing waves for the generalized Davey-Stewartson system[J].J Dynam Diff Eqns,1994,6:325-334.

[25]Ohta M.Instability of standing waves the generalized Davey-Stewartson systems[J].Ann Inst Henri Poincare:Phys Theor,1995,63:69-80.

[26]Gan Z H,Zhang J.Sharp threshold of global existence and instability of standing wave for a Davey-Stewartson system[J].Commun Math Phys,2008,283:93-125.

[27]Wang B X,Guo B L.On the initial value problem and scattering of solutions for the generalized Davey-Stewartson systems[J].Sci China:Math,2001,A44:994-1002.

[28]Ozawa T.Exact blow-up solutions to the Cauchy problem for the Davey-Stewartson systems[J].Proc Roy Soc London,1992,A436:345-349.

[29]Richards G.Mass concentration for the Davey-Stewartson system[J].Diff Integral Eqns,2011,24:261-280.

[30]Papanicolaou G C,Sulem C,Sulem P L,et al.The focusing singularity of the Davey-Stewartson equations for gravity-capillary surface waves[J].Physica,1994,D72:61-86.

[31]Gan Z H,Zhang J.Sharp conditions of global existence for the generalized Davey-Stewartson system in three dimensional space[J].Acta Math Scientia,2006,A26:87-92.

[32]Shu J,Zhang J.Sharp conditions of global existence for the generalized Davey-Stewartson system[J].IMA J Appl Math,2007,72:36-42.

[33]Li X G,Zhang J,Lai S Y,et al.The sharp threshold and limiting profile of blow-up solutions for a Davey-Stewartson system[J].J Diff Eqns,2011,250:2197-2226.

[34]Gérard P.Description du defaut de compacite de l'injection de Sobolev[J].ESAIM Control Optim Calc Var,1998,3:213-233.

[35]Hmidi T,Keraani S.Blowup theory for the critical nonlinear Schr?dinger equations revisited[J].Internat Math Res Notices,2005,46:2815-2828.

[36]Weinstein M I.Nonlinear Schr?dinger equations and sharp interpolation estimates[J].Commun Math Phys,1983,87:567-576.

[37]Zhang J.Cross-constrained variational problem and nonlinear Schr?dinger equation[C]//Cucker F,Rojas J M.Proc Smalefest 2000.Found Comput Math.New Jersey:World Scientific,2002.

[38]Zhang J.Sharp conditions of global existence for nonlinear Schr?dinger and Klein-Gordon equations[J].Nonlinear Anal,2002,48:191-207.

[39]Holmer J,Roudenko S.On blow-up solutions to the 3D cubic nonlinear Schr?dinger equation[J].Appl Math Research Express,2007,2007:4.

[40]Kwong M K.Uniqueness of positive solutions of Δu-u+up=0 in Rn[J].Arch Rational Mech Anal,1989,105:243-266.

[41]Strauss W A.Existence of solitary waves in higher dimensions[J].Commun Math Phys,1977,55:149-162.

主站蜘蛛池模板: 国产网站黄| 五月婷婷丁香综合| 国产黑人在线| 2020精品极品国产色在线观看| 97精品国产高清久久久久蜜芽| 欧美不卡视频在线观看| 亚洲欧美一级一级a| 东京热av无码电影一区二区| 成人综合在线观看| 综合天天色| 亚洲欧美自拍中文| 一区二区三区在线不卡免费| 欧美精品1区2区| 欧美伦理一区| 久久青草精品一区二区三区| 天堂va亚洲va欧美va国产| 日韩中文无码av超清| 成年av福利永久免费观看| 中文精品久久久久国产网址| 超碰免费91| 国产福利免费视频| 欧美精品亚洲日韩a| 亚洲午夜18| 欧美啪啪网| 国产福利一区二区在线观看| 99视频在线看| 日本亚洲国产一区二区三区| 日韩黄色精品| 好吊色妇女免费视频免费| 国产在线精品99一区不卡| 狠狠色婷婷丁香综合久久韩国| 欧美日韩理论| 最新国产成人剧情在线播放| 午夜国产在线观看| 亚洲伊人久久精品影院| 亚洲二区视频| 午夜欧美在线| 五月婷婷导航| 免费人成黄页在线观看国产| 国产在线无码一区二区三区| 久久久久久高潮白浆| 日本a∨在线观看| 成人午夜免费观看| 中文字幕自拍偷拍| 亚洲无码精彩视频在线观看| 国产三级精品三级在线观看| 国产丝袜啪啪| 在线欧美日韩国产| 精品人妻无码中字系列| 国产成人乱无码视频| 狠狠色综合久久狠狠色综合| 亚洲欧美自拍中文| 蜜桃视频一区二区| 制服丝袜 91视频| 天天综合天天综合| 99尹人香蕉国产免费天天拍| 精品成人一区二区| 九色91在线视频| 一本大道香蕉中文日本不卡高清二区 | 91久草视频| 麻豆国产原创视频在线播放| 在线看国产精品| 中文成人在线| 国产网站一区二区三区| 国产极品粉嫩小泬免费看| 亚洲有无码中文网| 中文字幕色在线| 日韩黄色精品| 欧美日韩一区二区三区在线视频| 欧美19综合中文字幕| 亚洲无线国产观看| 午夜激情婷婷| 精品国产成人三级在线观看| 欧美日韩国产成人高清视频| 亚洲高清中文字幕在线看不卡| v天堂中文在线| 99久久成人国产精品免费| 日韩无码一二三区| 91免费在线看| 露脸真实国语乱在线观看| 在线欧美日韩| 97se亚洲综合在线韩国专区福利|