陳鵬++李筍??
摘 要 本文設計了一種亞式風格的可重置執行價格期權;嚴格證明了可重置執行邊界的存在性,以及連續區域與重置區域的單連通性;利用HartmanWatson分布,寫出了可重置期權的定價公式,并利用此公式給出了可重置執行邊界的一種新的數值算法.
關鍵詞 市場流動性;亞式可重置期權;重置執行邊界;重置執行紅利;新型遞歸積分法
中圖分類號 F224.7 文獻標識碼 A
One Resettable Striking Price Options
Design of Asian Style
CHEN Peng ,LI Sun
(College of Mathematic and Econometrics Hunan University , Changsha, Hunan 410082,China)
Abstract This paper designed one kind of resettable strike price options with Asian style, and proved strictly the existence of resetting boundary and the simple connectedness of continuation region and resetting region. Making use of HartmanWatson distribution, the pricing formula of resettable strike price options was written out, and a new numerical algorithm for resetting boundary utilizing this formula was given.
Key words market liquidity; Asian resettable options; resetting boundary; resetting premium; new recursive integral method
1 引 言
當今世界,金融衍生產品主要以美式產品為主,因為它們比歐式品有更大的交易靈活性,受到越來越多投資者青睞.美式產品很豐富,除了傳統的普通美式看漲、看跌期權,人們創造了各種奇異性的美式期權.比如,在金融期權領域有:美式亞式期權[1]、俄羅斯期權[2]、美式巴黎期權[3]、以色列期權[4]、不列顛期權[5]、各種抵押貸款等[6];在實物期權領域有各種早期執行機會[7]、變更條約條款[8]等.盡管美式品日益成為主流,但部分投資者,仍然會選擇歐式品,比如大宗原料、能源進出口條約,因為這里頭很大部分購買者是風險對沖者,他們不關心價格的波動,只要能對沖掉風險就好;而另一部分人是純正的期權投資者,甘愿暴露在價格波動的風險下,但又承擔不了美式期權昂貴的價格.
以普通歐式看漲為例,若在接近到期日前資產價格S遠低于執行價格K,則歐式期權價值幾乎為零,因為市場翻轉的機會不大.純正的看漲權購買者陷入流動性風險,因為想賣掉期權也很難.為增加市場流動性,金融工程師們設計了諸如shout floor[9],reset strike put(call)[10],multiple reset rights[11],geometric average trigger reset options[12]、the British put option等等具有內生可抗流動性風險條款的新期權.這些期權中大部分本質上來說是另外一種美式期權,只不過它賭的不完全是資產在未來某一個時刻價格,還有隨機化的參數.這樣的期權具有更大的奇異性,需要更多的定價技巧.
本文設計的新期權屬于可變更合約條款類期權,這一類產品設計思想是通過改變原始合約條款中的某些參數值,賦予投資者更多的選擇權利.在香港市場上常見的產品有shout floor、reset strike put(call),其中,reset strike put 就是在普通看跌期權基礎上,讓期權購買者在合約期限內有限次改變交割價格的一種新期權,它能讓已經進入“死態”的期權“復活”,所以比普通的看跌權更昂貴.重置條款既可以是手動的,也可以是自動的[8,12],后者本質上還是歐式權,而前者卻是美式權.重置條款也可以選擇其他參數,比如延長交易時間,這在實物期權領域很常見;利率相關產品也可以考慮更改借貸款利率.[9-11]考慮了將交割價格置換為當前價格的設計,本文設計的新期權在文獻[10]基礎上擴展,將交割價格置換為過去一段時間的平均值,這樣可以減少將來后悔的可能,這正是亞式風格期權設計的思想.新產品能繼承文獻[10]中產品關于增強市場流動性的功能,同時,因為是亞式設計,故比reset strike call更便宜[3].這就是本文選題的出發點.本文采用手動停止設計,本質是美式期權.
2 模型假設
假設市場上存在兩種可交易資產,風險資產和無風險資產.無風險資產Bt一般假定就是貨幣市場賬戶,它的動力學方程為:
參考文獻
[1] G PESKIR , N UYS. On Asian Options of American type[C]//Exotic Option Pricing and Advanced Levy Models. Eindhoven: John Wiley, 2005: 217-235.
[2] G PESKIR, A N SHIRYAEV. Optimal stopping and freeboundary problems[M]. Lectures in Mathematics ETH Zurich: Birkhauser,2006.endprint
[3] 郭宇權.金融衍生產品數學模型[M].第2版.北京:世界圖書出版公司北京公司,2010:243.
[4] Y KIFER. Game options [J]. Finance and Stochastics, 2000, 4(4):443-463.
[5] G PESKIR, F SAMEE. The british put option [J]. Appl Math. Finance, 2011, 18(6): 537-563.
[6] J XIA, X Y ZHOU. Stock loans [J]. Mathematical Finance, 2007, 17(2):307-317.
[7] Chi Man LEUNG, Yue Kuen KWOK. PatentInvestment Games under Asymmetric Information [J]. European Journal of Operational Research, 2012, 223(2):441-451.
[8] Chi Man LEUNG, Yue Kuen KWOK. Employee stock option valuation with repricing features[J].Quantitative Finance, 2008, 8(6):561-569.
[9] T H F CHEUK, T C F VORST. Shout floors[J]. Financial engineering review, 2003,1(2):15-35.
[10]Min DAI, Yue Kuen KWOK, Lixin WU. Optimal shouting policies of options with strike reset right[J]. Mathematical Finance, 2004, 14(3): 383-401.
[11]Min DAI, Yue Kuen KWOK, Lixin WU. Options with multiple reset rights[J]. International Journal of Theoretical and Applied Finance, 2003, 6(6): 637-653.
[12]T S DAI, Y Y FANG, Y D LYUU. Analytics for geometric average trigger reset options[J]. Applied Economics Letters, 2005, 12(13): 835-840.
[13]H JONSSON, A G KUKUSH, D S SILVESTROV. Threshold structure of optimal stopping strategies for american type option(II)[J].Theory of Probability and Mathematical Statistics,2006,(72):47-58.
[14]S D JACKA. Optimal stopping and the American put[J]. Math. Finance,1991, 1(2) :1-14.
[15]R GESKE. The valuation of compound options[J]. J. Financial Econom, 1979,7(1): 63-81.
[16]S D HODGES, M J P SELBY. On the evaluation of compound options[J]. Management Science, 1987,33(3):347-355.
[17]S GERHLD. The hartmanwatson distribution revisited: asymptotics for pricing asian options[J]. Journal of Applied Probability, 2011, 48(3):597-899.
[18]G PESKIR. From stochastic calculus to mathematical finance[M].Berlin: Springer Berlin Heidelberg, 2006:535-546.
[19]S P ZHU. A new analyticalapproximation formula for the optimal exercise boundary of american put options [J]. International Journal of Theoretical and Applied Finance, 2006,9(7):1141-1177.
[20]J E ZHANG , T C LI. Pricing and hedging american options analytically: A Perturbation Method[J]. Mathematical Finance, 2010, 20(1): 59-87.
[21]S P ZHU. An exact and explicit solution for the valuation of american put options[J]. Quant. Finan., 2006,6(3): 229-242.
[22]熊炳忠,馬柏林.基于貝葉斯MCMC算法的美式期權定價[J].經濟數學,2013,30(2):55-62.
[23]邢迎春.CARA效用函數下美式期權的定價[J].經濟數學,2011,28(1):18-20.
[24]梅樹立.求解非線性BlackScholes模型的自適應小波精細積分法[J].經濟數學,2012,29(4):8-14.
[25]科森多爾.隨機微分方程[M].第6版.北京:世界圖書出版公司北京公司,2006:139-140.endprint
[3] 郭宇權.金融衍生產品數學模型[M].第2版.北京:世界圖書出版公司北京公司,2010:243.
[4] Y KIFER. Game options [J]. Finance and Stochastics, 2000, 4(4):443-463.
[5] G PESKIR, F SAMEE. The british put option [J]. Appl Math. Finance, 2011, 18(6): 537-563.
[6] J XIA, X Y ZHOU. Stock loans [J]. Mathematical Finance, 2007, 17(2):307-317.
[7] Chi Man LEUNG, Yue Kuen KWOK. PatentInvestment Games under Asymmetric Information [J]. European Journal of Operational Research, 2012, 223(2):441-451.
[8] Chi Man LEUNG, Yue Kuen KWOK. Employee stock option valuation with repricing features[J].Quantitative Finance, 2008, 8(6):561-569.
[9] T H F CHEUK, T C F VORST. Shout floors[J]. Financial engineering review, 2003,1(2):15-35.
[10]Min DAI, Yue Kuen KWOK, Lixin WU. Optimal shouting policies of options with strike reset right[J]. Mathematical Finance, 2004, 14(3): 383-401.
[11]Min DAI, Yue Kuen KWOK, Lixin WU. Options with multiple reset rights[J]. International Journal of Theoretical and Applied Finance, 2003, 6(6): 637-653.
[12]T S DAI, Y Y FANG, Y D LYUU. Analytics for geometric average trigger reset options[J]. Applied Economics Letters, 2005, 12(13): 835-840.
[13]H JONSSON, A G KUKUSH, D S SILVESTROV. Threshold structure of optimal stopping strategies for american type option(II)[J].Theory of Probability and Mathematical Statistics,2006,(72):47-58.
[14]S D JACKA. Optimal stopping and the American put[J]. Math. Finance,1991, 1(2) :1-14.
[15]R GESKE. The valuation of compound options[J]. J. Financial Econom, 1979,7(1): 63-81.
[16]S D HODGES, M J P SELBY. On the evaluation of compound options[J]. Management Science, 1987,33(3):347-355.
[17]S GERHLD. The hartmanwatson distribution revisited: asymptotics for pricing asian options[J]. Journal of Applied Probability, 2011, 48(3):597-899.
[18]G PESKIR. From stochastic calculus to mathematical finance[M].Berlin: Springer Berlin Heidelberg, 2006:535-546.
[19]S P ZHU. A new analyticalapproximation formula for the optimal exercise boundary of american put options [J]. International Journal of Theoretical and Applied Finance, 2006,9(7):1141-1177.
[20]J E ZHANG , T C LI. Pricing and hedging american options analytically: A Perturbation Method[J]. Mathematical Finance, 2010, 20(1): 59-87.
[21]S P ZHU. An exact and explicit solution for the valuation of american put options[J]. Quant. Finan., 2006,6(3): 229-242.
[22]熊炳忠,馬柏林.基于貝葉斯MCMC算法的美式期權定價[J].經濟數學,2013,30(2):55-62.
[23]邢迎春.CARA效用函數下美式期權的定價[J].經濟數學,2011,28(1):18-20.
[24]梅樹立.求解非線性BlackScholes模型的自適應小波精細積分法[J].經濟數學,2012,29(4):8-14.
[25]科森多爾.隨機微分方程[M].第6版.北京:世界圖書出版公司北京公司,2006:139-140.endprint
[3] 郭宇權.金融衍生產品數學模型[M].第2版.北京:世界圖書出版公司北京公司,2010:243.
[4] Y KIFER. Game options [J]. Finance and Stochastics, 2000, 4(4):443-463.
[5] G PESKIR, F SAMEE. The british put option [J]. Appl Math. Finance, 2011, 18(6): 537-563.
[6] J XIA, X Y ZHOU. Stock loans [J]. Mathematical Finance, 2007, 17(2):307-317.
[7] Chi Man LEUNG, Yue Kuen KWOK. PatentInvestment Games under Asymmetric Information [J]. European Journal of Operational Research, 2012, 223(2):441-451.
[8] Chi Man LEUNG, Yue Kuen KWOK. Employee stock option valuation with repricing features[J].Quantitative Finance, 2008, 8(6):561-569.
[9] T H F CHEUK, T C F VORST. Shout floors[J]. Financial engineering review, 2003,1(2):15-35.
[10]Min DAI, Yue Kuen KWOK, Lixin WU. Optimal shouting policies of options with strike reset right[J]. Mathematical Finance, 2004, 14(3): 383-401.
[11]Min DAI, Yue Kuen KWOK, Lixin WU. Options with multiple reset rights[J]. International Journal of Theoretical and Applied Finance, 2003, 6(6): 637-653.
[12]T S DAI, Y Y FANG, Y D LYUU. Analytics for geometric average trigger reset options[J]. Applied Economics Letters, 2005, 12(13): 835-840.
[13]H JONSSON, A G KUKUSH, D S SILVESTROV. Threshold structure of optimal stopping strategies for american type option(II)[J].Theory of Probability and Mathematical Statistics,2006,(72):47-58.
[14]S D JACKA. Optimal stopping and the American put[J]. Math. Finance,1991, 1(2) :1-14.
[15]R GESKE. The valuation of compound options[J]. J. Financial Econom, 1979,7(1): 63-81.
[16]S D HODGES, M J P SELBY. On the evaluation of compound options[J]. Management Science, 1987,33(3):347-355.
[17]S GERHLD. The hartmanwatson distribution revisited: asymptotics for pricing asian options[J]. Journal of Applied Probability, 2011, 48(3):597-899.
[18]G PESKIR. From stochastic calculus to mathematical finance[M].Berlin: Springer Berlin Heidelberg, 2006:535-546.
[19]S P ZHU. A new analyticalapproximation formula for the optimal exercise boundary of american put options [J]. International Journal of Theoretical and Applied Finance, 2006,9(7):1141-1177.
[20]J E ZHANG , T C LI. Pricing and hedging american options analytically: A Perturbation Method[J]. Mathematical Finance, 2010, 20(1): 59-87.
[21]S P ZHU. An exact and explicit solution for the valuation of american put options[J]. Quant. Finan., 2006,6(3): 229-242.
[22]熊炳忠,馬柏林.基于貝葉斯MCMC算法的美式期權定價[J].經濟數學,2013,30(2):55-62.
[23]邢迎春.CARA效用函數下美式期權的定價[J].經濟數學,2011,28(1):18-20.
[24]梅樹立.求解非線性BlackScholes模型的自適應小波精細積分法[J].經濟數學,2012,29(4):8-14.
[25]科森多爾.隨機微分方程[M].第6版.北京:世界圖書出版公司北京公司,2006:139-140.endprint