999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一種亞式風格可重置執行價格期權設計

2014-10-27 10:06:14陳鵬李筍??
經濟數學 2014年3期

陳鵬++李筍??

摘 要 本文設計了一種亞式風格的可重置執行價格期權;嚴格證明了可重置執行邊界的存在性,以及連續區域與重置區域的單連通性;利用HartmanWatson分布,寫出了可重置期權的定價公式,并利用此公式給出了可重置執行邊界的一種新的數值算法.

關鍵詞 市場流動性;亞式可重置期權;重置執行邊界;重置執行紅利;新型遞歸積分法

中圖分類號 F224.7 文獻標識碼 A

One Resettable Striking Price Options

Design of Asian Style

CHEN Peng ,LI Sun

(College of Mathematic and Econometrics Hunan University , Changsha, Hunan 410082,China)

Abstract This paper designed one kind of resettable strike price options with Asian style, and proved strictly the existence of resetting boundary and the simple connectedness of continuation region and resetting region. Making use of HartmanWatson distribution, the pricing formula of resettable strike price options was written out, and a new numerical algorithm for resetting boundary utilizing this formula was given.

Key words market liquidity; Asian resettable options; resetting boundary; resetting premium; new recursive integral method

1 引 言

當今世界,金融衍生產品主要以美式產品為主,因為它們比歐式品有更大的交易靈活性,受到越來越多投資者青睞.美式產品很豐富,除了傳統的普通美式看漲、看跌期權,人們創造了各種奇異性的美式期權.比如,在金融期權領域有:美式亞式期權[1]、俄羅斯期權[2]、美式巴黎期權[3]、以色列期權[4]、不列顛期權[5]、各種抵押貸款等[6];在實物期權領域有各種早期執行機會[7]、變更條約條款[8]等.盡管美式品日益成為主流,但部分投資者,仍然會選擇歐式品,比如大宗原料、能源進出口條約,因為這里頭很大部分購買者是風險對沖者,他們不關心價格的波動,只要能對沖掉風險就好;而另一部分人是純正的期權投資者,甘愿暴露在價格波動的風險下,但又承擔不了美式期權昂貴的價格.

以普通歐式看漲為例,若在接近到期日前資產價格S遠低于執行價格K,則歐式期權價值幾乎為零,因為市場翻轉的機會不大.純正的看漲權購買者陷入流動性風險,因為想賣掉期權也很難.為增加市場流動性,金融工程師們設計了諸如shout floor[9],reset strike put(call)[10],multiple reset rights[11],geometric average trigger reset options[12]、the British put option等等具有內生可抗流動性風險條款的新期權.這些期權中大部分本質上來說是另外一種美式期權,只不過它賭的不完全是資產在未來某一個時刻價格,還有隨機化的參數.這樣的期權具有更大的奇異性,需要更多的定價技巧.

本文設計的新期權屬于可變更合約條款類期權,這一類產品設計思想是通過改變原始合約條款中的某些參數值,賦予投資者更多的選擇權利.在香港市場上常見的產品有shout floor、reset strike put(call),其中,reset strike put 就是在普通看跌期權基礎上,讓期權購買者在合約期限內有限次改變交割價格的一種新期權,它能讓已經進入“死態”的期權“復活”,所以比普通的看跌權更昂貴.重置條款既可以是手動的,也可以是自動的[8,12],后者本質上還是歐式權,而前者卻是美式權.重置條款也可以選擇其他參數,比如延長交易時間,這在實物期權領域很常見;利率相關產品也可以考慮更改借貸款利率.[9-11]考慮了將交割價格置換為當前價格的設計,本文設計的新期權在文獻[10]基礎上擴展,將交割價格置換為過去一段時間的平均值,這樣可以減少將來后悔的可能,這正是亞式風格期權設計的思想.新產品能繼承文獻[10]中產品關于增強市場流動性的功能,同時,因為是亞式設計,故比reset strike call更便宜[3].這就是本文選題的出發點.本文采用手動停止設計,本質是美式期權.

2 模型假設

假設市場上存在兩種可交易資產,風險資產和無風險資產.無風險資產Bt一般假定就是貨幣市場賬戶,它的動力學方程為:

參考文獻

[1] G PESKIR , N UYS. On Asian Options of American type[C]//Exotic Option Pricing and Advanced Levy Models. Eindhoven: John Wiley, 2005: 217-235.

[2] G PESKIR, A N SHIRYAEV. Optimal stopping and freeboundary problems[M]. Lectures in Mathematics ETH Zurich: Birkhauser,2006.endprint

[3] 郭宇權.金融衍生產品數學模型[M].第2版.北京:世界圖書出版公司北京公司,2010:243.

[4] Y KIFER. Game options [J]. Finance and Stochastics, 2000, 4(4):443-463.

[5] G PESKIR, F SAMEE. The british put option [J]. Appl Math. Finance, 2011, 18(6): 537-563.

[6] J XIA, X Y ZHOU. Stock loans [J]. Mathematical Finance, 2007, 17(2):307-317.

[7] Chi Man LEUNG, Yue Kuen KWOK. PatentInvestment Games under Asymmetric Information [J]. European Journal of Operational Research, 2012, 223(2):441-451.

[8] Chi Man LEUNG, Yue Kuen KWOK. Employee stock option valuation with repricing features[J].Quantitative Finance, 2008, 8(6):561-569.

[9] T H F CHEUK, T C F VORST. Shout floors[J]. Financial engineering review, 2003,1(2):15-35.

[10]Min DAI, Yue Kuen KWOK, Lixin WU. Optimal shouting policies of options with strike reset right[J]. Mathematical Finance, 2004, 14(3): 383-401.

[11]Min DAI, Yue Kuen KWOK, Lixin WU. Options with multiple reset rights[J]. International Journal of Theoretical and Applied Finance, 2003, 6(6): 637-653.

[12]T S DAI, Y Y FANG, Y D LYUU. Analytics for geometric average trigger reset options[J]. Applied Economics Letters, 2005, 12(13): 835-840.

[13]H JONSSON, A G KUKUSH, D S SILVESTROV. Threshold structure of optimal stopping strategies for american type option(II)[J].Theory of Probability and Mathematical Statistics,2006,(72):47-58.

[14]S D JACKA. Optimal stopping and the American put[J]. Math. Finance,1991, 1(2) :1-14.

[15]R GESKE. The valuation of compound options[J]. J. Financial Econom, 1979,7(1): 63-81.

[16]S D HODGES, M J P SELBY. On the evaluation of compound options[J]. Management Science, 1987,33(3):347-355.

[17]S GERHLD. The hartmanwatson distribution revisited: asymptotics for pricing asian options[J]. Journal of Applied Probability, 2011, 48(3):597-899.

[18]G PESKIR. From stochastic calculus to mathematical finance[M].Berlin: Springer Berlin Heidelberg, 2006:535-546.

[19]S P ZHU. A new analyticalapproximation formula for the optimal exercise boundary of american put options [J]. International Journal of Theoretical and Applied Finance, 2006,9(7):1141-1177.

[20]J E ZHANG , T C LI. Pricing and hedging american options analytically: A Perturbation Method[J]. Mathematical Finance, 2010, 20(1): 59-87.

[21]S P ZHU. An exact and explicit solution for the valuation of american put options[J]. Quant. Finan., 2006,6(3): 229-242.

[22]熊炳忠,馬柏林.基于貝葉斯MCMC算法的美式期權定價[J].經濟數學,2013,30(2):55-62.

[23]邢迎春.CARA效用函數下美式期權的定價[J].經濟數學,2011,28(1):18-20.

[24]梅樹立.求解非線性BlackScholes模型的自適應小波精細積分法[J].經濟數學,2012,29(4):8-14.

[25]科森多爾.隨機微分方程[M].第6版.北京:世界圖書出版公司北京公司,2006:139-140.endprint

[3] 郭宇權.金融衍生產品數學模型[M].第2版.北京:世界圖書出版公司北京公司,2010:243.

[4] Y KIFER. Game options [J]. Finance and Stochastics, 2000, 4(4):443-463.

[5] G PESKIR, F SAMEE. The british put option [J]. Appl Math. Finance, 2011, 18(6): 537-563.

[6] J XIA, X Y ZHOU. Stock loans [J]. Mathematical Finance, 2007, 17(2):307-317.

[7] Chi Man LEUNG, Yue Kuen KWOK. PatentInvestment Games under Asymmetric Information [J]. European Journal of Operational Research, 2012, 223(2):441-451.

[8] Chi Man LEUNG, Yue Kuen KWOK. Employee stock option valuation with repricing features[J].Quantitative Finance, 2008, 8(6):561-569.

[9] T H F CHEUK, T C F VORST. Shout floors[J]. Financial engineering review, 2003,1(2):15-35.

[10]Min DAI, Yue Kuen KWOK, Lixin WU. Optimal shouting policies of options with strike reset right[J]. Mathematical Finance, 2004, 14(3): 383-401.

[11]Min DAI, Yue Kuen KWOK, Lixin WU. Options with multiple reset rights[J]. International Journal of Theoretical and Applied Finance, 2003, 6(6): 637-653.

[12]T S DAI, Y Y FANG, Y D LYUU. Analytics for geometric average trigger reset options[J]. Applied Economics Letters, 2005, 12(13): 835-840.

[13]H JONSSON, A G KUKUSH, D S SILVESTROV. Threshold structure of optimal stopping strategies for american type option(II)[J].Theory of Probability and Mathematical Statistics,2006,(72):47-58.

[14]S D JACKA. Optimal stopping and the American put[J]. Math. Finance,1991, 1(2) :1-14.

[15]R GESKE. The valuation of compound options[J]. J. Financial Econom, 1979,7(1): 63-81.

[16]S D HODGES, M J P SELBY. On the evaluation of compound options[J]. Management Science, 1987,33(3):347-355.

[17]S GERHLD. The hartmanwatson distribution revisited: asymptotics for pricing asian options[J]. Journal of Applied Probability, 2011, 48(3):597-899.

[18]G PESKIR. From stochastic calculus to mathematical finance[M].Berlin: Springer Berlin Heidelberg, 2006:535-546.

[19]S P ZHU. A new analyticalapproximation formula for the optimal exercise boundary of american put options [J]. International Journal of Theoretical and Applied Finance, 2006,9(7):1141-1177.

[20]J E ZHANG , T C LI. Pricing and hedging american options analytically: A Perturbation Method[J]. Mathematical Finance, 2010, 20(1): 59-87.

[21]S P ZHU. An exact and explicit solution for the valuation of american put options[J]. Quant. Finan., 2006,6(3): 229-242.

[22]熊炳忠,馬柏林.基于貝葉斯MCMC算法的美式期權定價[J].經濟數學,2013,30(2):55-62.

[23]邢迎春.CARA效用函數下美式期權的定價[J].經濟數學,2011,28(1):18-20.

[24]梅樹立.求解非線性BlackScholes模型的自適應小波精細積分法[J].經濟數學,2012,29(4):8-14.

[25]科森多爾.隨機微分方程[M].第6版.北京:世界圖書出版公司北京公司,2006:139-140.endprint

[3] 郭宇權.金融衍生產品數學模型[M].第2版.北京:世界圖書出版公司北京公司,2010:243.

[4] Y KIFER. Game options [J]. Finance and Stochastics, 2000, 4(4):443-463.

[5] G PESKIR, F SAMEE. The british put option [J]. Appl Math. Finance, 2011, 18(6): 537-563.

[6] J XIA, X Y ZHOU. Stock loans [J]. Mathematical Finance, 2007, 17(2):307-317.

[7] Chi Man LEUNG, Yue Kuen KWOK. PatentInvestment Games under Asymmetric Information [J]. European Journal of Operational Research, 2012, 223(2):441-451.

[8] Chi Man LEUNG, Yue Kuen KWOK. Employee stock option valuation with repricing features[J].Quantitative Finance, 2008, 8(6):561-569.

[9] T H F CHEUK, T C F VORST. Shout floors[J]. Financial engineering review, 2003,1(2):15-35.

[10]Min DAI, Yue Kuen KWOK, Lixin WU. Optimal shouting policies of options with strike reset right[J]. Mathematical Finance, 2004, 14(3): 383-401.

[11]Min DAI, Yue Kuen KWOK, Lixin WU. Options with multiple reset rights[J]. International Journal of Theoretical and Applied Finance, 2003, 6(6): 637-653.

[12]T S DAI, Y Y FANG, Y D LYUU. Analytics for geometric average trigger reset options[J]. Applied Economics Letters, 2005, 12(13): 835-840.

[13]H JONSSON, A G KUKUSH, D S SILVESTROV. Threshold structure of optimal stopping strategies for american type option(II)[J].Theory of Probability and Mathematical Statistics,2006,(72):47-58.

[14]S D JACKA. Optimal stopping and the American put[J]. Math. Finance,1991, 1(2) :1-14.

[15]R GESKE. The valuation of compound options[J]. J. Financial Econom, 1979,7(1): 63-81.

[16]S D HODGES, M J P SELBY. On the evaluation of compound options[J]. Management Science, 1987,33(3):347-355.

[17]S GERHLD. The hartmanwatson distribution revisited: asymptotics for pricing asian options[J]. Journal of Applied Probability, 2011, 48(3):597-899.

[18]G PESKIR. From stochastic calculus to mathematical finance[M].Berlin: Springer Berlin Heidelberg, 2006:535-546.

[19]S P ZHU. A new analyticalapproximation formula for the optimal exercise boundary of american put options [J]. International Journal of Theoretical and Applied Finance, 2006,9(7):1141-1177.

[20]J E ZHANG , T C LI. Pricing and hedging american options analytically: A Perturbation Method[J]. Mathematical Finance, 2010, 20(1): 59-87.

[21]S P ZHU. An exact and explicit solution for the valuation of american put options[J]. Quant. Finan., 2006,6(3): 229-242.

[22]熊炳忠,馬柏林.基于貝葉斯MCMC算法的美式期權定價[J].經濟數學,2013,30(2):55-62.

[23]邢迎春.CARA效用函數下美式期權的定價[J].經濟數學,2011,28(1):18-20.

[24]梅樹立.求解非線性BlackScholes模型的自適應小波精細積分法[J].經濟數學,2012,29(4):8-14.

[25]科森多爾.隨機微分方程[M].第6版.北京:世界圖書出版公司北京公司,2006:139-140.endprint

主站蜘蛛池模板: 国产精品永久免费嫩草研究院| 免费在线视频a| 久久夜色精品国产嚕嚕亚洲av| 99热在线只有精品| 欧美日韩亚洲综合在线观看| 激情五月婷婷综合网| www精品久久| 国产精品无码AV片在线观看播放| 2021亚洲精品不卡a| 999精品在线视频| 91破解版在线亚洲| 亚洲日韩久久综合中文字幕| 黄色国产在线| 尤物特级无码毛片免费| 国产精品va免费视频| yy6080理论大片一级久久| 91口爆吞精国产对白第三集 | 国产SUV精品一区二区| 中国一级特黄视频| 亚洲欧美极品| 精品久久国产综合精麻豆| 日韩黄色在线| 91精品视频在线播放| 亚洲欧洲日韩久久狠狠爱| 波多野结衣中文字幕一区| 日本人妻一区二区三区不卡影院| 91人人妻人人做人人爽男同 | 欧美国产综合视频| 91系列在线观看| 99伊人精品| 亚洲日韩精品无码专区| 国产精品亚洲综合久久小说| 91最新精品视频发布页| 黄片一区二区三区| 一区二区三区四区日韩| 欧美精品成人一区二区视频一| 啦啦啦网站在线观看a毛片| 人妻丰满熟妇av五码区| 免费在线色| 国产第一页屁屁影院| 日韩精品毛片| 成人综合网址| 欧美成一级| 亚洲精品第1页| 精品视频在线一区| 漂亮人妻被中出中文字幕久久| 波多野衣结在线精品二区| 在线无码私拍| 伊人精品视频免费在线| 久久99国产精品成人欧美| 性激烈欧美三级在线播放| 色噜噜狠狠色综合网图区| 欧美午夜网| 国产精品欧美亚洲韩国日本不卡| 全部无卡免费的毛片在线看| 天天做天天爱天天爽综合区| 欧美国产精品不卡在线观看| 国产成人精品综合| 色成人亚洲| 亚洲欧美国产视频| www精品久久| 无码专区第一页| 最新精品久久精品| 欧美日本在线播放| 国产丝袜啪啪| 欧美va亚洲va香蕉在线| 亚洲中文精品人人永久免费| 免费a在线观看播放| 色妞永久免费视频| 免费啪啪网址| 亚洲a级毛片| 精品视频一区在线观看| 久热re国产手机在线观看| 永久在线精品免费视频观看| 国产女人在线| 国产免费好大好硬视频| 91蜜芽尤物福利在线观看| 波多野结衣二区| 日韩第九页| 制服无码网站| 国产成人久久综合777777麻豆| 国产日韩久久久久无码精品|