999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

On the Complete Moment Convergence for Arrays

2014-10-27 18:39:55鄧總綱
經濟數學 2014年3期

鄧總綱

Abstract Let Xni;i≥1,n≥1 be an array of rowwise  mixing random variables. The authors discuss the complete moment convergence for  mixing random variables without assumptions of identical distribution and stochastic domination. The results obtained generalize and improve the corresponding theorems of Hu and Taylor (1997), Zhu (2006), Wu and Zhu (2010).

Key words arrays of rowwise mixing random variables;complete moment convergence; complete convergence

中圖分類號 AMS(2010) 60F15 文獻標識碼 A



1 Introduction

The concept of complete convergence was introduced by Hsu and Robbins[1] as follows: A sequence Xn;n≥1 of random variables is called to converge completely to the constant λ if

∑

SymboleB@ n=1PXn-λ>ε<

SymboleB@  for ε>0. (1)

In view of the BorelCantelli lemma, this implies that Xn→λ almost surely. Therefore the complete convergence is a very important tool in establishing almost sure convergence of summation of random variables. Hsu and Robbins[1] proved that the sequence of arithmetic means of independent and identically distributed (i.i.d.) random variables converges completely to the expected value if the variance of the summands is finite. Erd¨os[2] proved the converse.

The result of HsuRobbinsErd¨os is a fundamental theorem in probability theory and has been generalized and extended in several directions by many authors. One of the most important generalizations is Baum and Katz[3] for the strong law of large numbers as follows: Let p≥1α and 12<α≤1. Let Xn;n≥1 be a sequence of i.i.d. random variables with EXn=0. Then the following statements are equivalent:

The desired results (13) and (14) follow from the above statement. This completes the proof of Corollary 1.

On the complete moment convergence for arrays of rowwise mixing random variables in the evaluation of risk estimation、advantage inspection (see Marciniak and Wesolowski (1999) and Fujioka (2011)), reliability (see Gupta and Akman (1998)), life test (see Mendenhall and Lehman (1960)), insurance, financial mathematics (see Ramsay (1993)), complex system (see Jurlewicz and Weron (2002)) and from financial and predict the actual problem and so on all have quite a wide range of applications.

References

[1] P L HSU, H ROBBINS. Complete convergence and the strong law of large numbers[J]. Proceedings of the National Academy of Sciences of the United States of America, 1947,33:25-31.endprint

[2] P ERDOS. Remark on my paper “on a theorem of Hsu and Robbins”[J]. Annals of Mathematical Statistics, 1950,20:286-291.

[3] L E BAUM, M KATZ. Convergence rates in the law of large numbers[J]. Transactions of American Mathematical Society, 1965,120:108-123.

[4] Y S CHOW . On the rate of moment convergence of sample sums and extremes[J]. Bulletin of the Institute of Mathematics Academia Sinica. 1988.16:177-201.

[5] T C HU, R L TAYLOR. On the strong law for arrays and for the bootstrap mean and variance[J]. International Journal of Mathematics and Mathematical Science, 1997,20(2): 375-382.

[6] M H ZHU. Strong laws of large numbers for arrays of rowwise mixing random variables[J]. Discrete Dynamics in Nature and Society,2007(74296):6.

[7] Y F WU, D J ZHU. Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables[J]. Journal of the Korean Statistical Society, 2000,39(2):189-197.

[8] S UTEV, M PELIGRAD. Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J]. Journal of Theoretical Probability, 2003,16(1):101-115.endprint

[2] P ERDOS. Remark on my paper “on a theorem of Hsu and Robbins”[J]. Annals of Mathematical Statistics, 1950,20:286-291.

[3] L E BAUM, M KATZ. Convergence rates in the law of large numbers[J]. Transactions of American Mathematical Society, 1965,120:108-123.

[4] Y S CHOW . On the rate of moment convergence of sample sums and extremes[J]. Bulletin of the Institute of Mathematics Academia Sinica. 1988.16:177-201.

[5] T C HU, R L TAYLOR. On the strong law for arrays and for the bootstrap mean and variance[J]. International Journal of Mathematics and Mathematical Science, 1997,20(2): 375-382.

[6] M H ZHU. Strong laws of large numbers for arrays of rowwise mixing random variables[J]. Discrete Dynamics in Nature and Society,2007(74296):6.

[7] Y F WU, D J ZHU. Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables[J]. Journal of the Korean Statistical Society, 2000,39(2):189-197.

[8] S UTEV, M PELIGRAD. Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J]. Journal of Theoretical Probability, 2003,16(1):101-115.endprint

[2] P ERDOS. Remark on my paper “on a theorem of Hsu and Robbins”[J]. Annals of Mathematical Statistics, 1950,20:286-291.

[3] L E BAUM, M KATZ. Convergence rates in the law of large numbers[J]. Transactions of American Mathematical Society, 1965,120:108-123.

[4] Y S CHOW . On the rate of moment convergence of sample sums and extremes[J]. Bulletin of the Institute of Mathematics Academia Sinica. 1988.16:177-201.

[5] T C HU, R L TAYLOR. On the strong law for arrays and for the bootstrap mean and variance[J]. International Journal of Mathematics and Mathematical Science, 1997,20(2): 375-382.

[6] M H ZHU. Strong laws of large numbers for arrays of rowwise mixing random variables[J]. Discrete Dynamics in Nature and Society,2007(74296):6.

[7] Y F WU, D J ZHU. Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables[J]. Journal of the Korean Statistical Society, 2000,39(2):189-197.

[8] S UTEV, M PELIGRAD. Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J]. Journal of Theoretical Probability, 2003,16(1):101-115.endprint

主站蜘蛛池模板: 亚洲国产成人自拍| 久久人人97超碰人人澡爱香蕉 | 国产美女丝袜高潮| 99热这里只有精品在线观看| 不卡国产视频第一页| 国产精品99在线观看| 免费一级毛片完整版在线看| 五月婷婷伊人网| 91精选国产大片| 国产精品人人做人人爽人人添| 国产精品私拍在线爆乳| 4虎影视国产在线观看精品| 一级香蕉人体视频| 国产精品亚欧美一区二区| 欧美性猛交一区二区三区| 免费国产黄线在线观看| 99久视频| 在线无码九区| 青草视频在线观看国产| 午夜不卡视频| 亚洲天堂视频网站| 亚洲精品亚洲人成在线| 97久久精品人人| 久久五月视频| 高清无码手机在线观看| 欧美成人午夜视频免看| 天天色天天操综合网| 中文字幕一区二区视频| 麻豆a级片| 99久久性生片| 91www在线观看| 国产成人免费| 国产真实自在自线免费精品| 亚洲欧美人成人让影院| 久久人搡人人玩人妻精品| 一级一级一片免费| 中文字幕有乳无码| 亚洲欧洲日韩综合| 国产不卡网| 伊人久久大香线蕉影院| 亚洲嫩模喷白浆| 欧美日韩亚洲国产| 国产在线98福利播放视频免费| 18禁不卡免费网站| 亚洲中文字幕在线精品一区| 青青草原国产| 亚洲最黄视频| 992tv国产人成在线观看| 无码高潮喷水专区久久| 亚洲一区色| 最新国产高清在线| 久久中文电影| 国产精品久久久久久久久久久久| 免费国产无遮挡又黄又爽| 日韩一区精品视频一区二区| 99ri精品视频在线观看播放| 激情综合婷婷丁香五月尤物| 无码高清专区| 一级毛片免费不卡在线视频| 国产理论一区| 色妺妺在线视频喷水| 国产经典在线观看一区| 欧美一级高清片欧美国产欧美| 精品国产中文一级毛片在线看 | 国产精品19p| 熟妇无码人妻| 国产一区二区三区精品欧美日韩| 欧美日韩成人在线观看| 久久久久亚洲av成人网人人软件| 亚洲V日韩V无码一区二区| 久草美女视频| 无码内射中文字幕岛国片| 国产精品成人一区二区| 一本大道东京热无码av| 成人无码区免费视频网站蜜臀| 国产第一页亚洲| 国产精品毛片一区| 无码视频国产精品一区二区| 亚洲日韩Av中文字幕无码| 久草网视频在线| 欧美一区二区精品久久久| 青草精品视频|