999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

On the Complete Moment Convergence for Arrays

2014-10-27 18:39:55鄧總綱
經濟數學 2014年3期

鄧總綱

Abstract Let Xni;i≥1,n≥1 be an array of rowwise  mixing random variables. The authors discuss the complete moment convergence for  mixing random variables without assumptions of identical distribution and stochastic domination. The results obtained generalize and improve the corresponding theorems of Hu and Taylor (1997), Zhu (2006), Wu and Zhu (2010).

Key words arrays of rowwise mixing random variables;complete moment convergence; complete convergence

中圖分類號 AMS(2010) 60F15 文獻標識碼 A



1 Introduction

The concept of complete convergence was introduced by Hsu and Robbins[1] as follows: A sequence Xn;n≥1 of random variables is called to converge completely to the constant λ if

∑

SymboleB@ n=1PXn-λ>ε<

SymboleB@  for ε>0. (1)

In view of the BorelCantelli lemma, this implies that Xn→λ almost surely. Therefore the complete convergence is a very important tool in establishing almost sure convergence of summation of random variables. Hsu and Robbins[1] proved that the sequence of arithmetic means of independent and identically distributed (i.i.d.) random variables converges completely to the expected value if the variance of the summands is finite. Erd¨os[2] proved the converse.

The result of HsuRobbinsErd¨os is a fundamental theorem in probability theory and has been generalized and extended in several directions by many authors. One of the most important generalizations is Baum and Katz[3] for the strong law of large numbers as follows: Let p≥1α and 12<α≤1. Let Xn;n≥1 be a sequence of i.i.d. random variables with EXn=0. Then the following statements are equivalent:

The desired results (13) and (14) follow from the above statement. This completes the proof of Corollary 1.

On the complete moment convergence for arrays of rowwise mixing random variables in the evaluation of risk estimation、advantage inspection (see Marciniak and Wesolowski (1999) and Fujioka (2011)), reliability (see Gupta and Akman (1998)), life test (see Mendenhall and Lehman (1960)), insurance, financial mathematics (see Ramsay (1993)), complex system (see Jurlewicz and Weron (2002)) and from financial and predict the actual problem and so on all have quite a wide range of applications.

References

[1] P L HSU, H ROBBINS. Complete convergence and the strong law of large numbers[J]. Proceedings of the National Academy of Sciences of the United States of America, 1947,33:25-31.endprint

[2] P ERDOS. Remark on my paper “on a theorem of Hsu and Robbins”[J]. Annals of Mathematical Statistics, 1950,20:286-291.

[3] L E BAUM, M KATZ. Convergence rates in the law of large numbers[J]. Transactions of American Mathematical Society, 1965,120:108-123.

[4] Y S CHOW . On the rate of moment convergence of sample sums and extremes[J]. Bulletin of the Institute of Mathematics Academia Sinica. 1988.16:177-201.

[5] T C HU, R L TAYLOR. On the strong law for arrays and for the bootstrap mean and variance[J]. International Journal of Mathematics and Mathematical Science, 1997,20(2): 375-382.

[6] M H ZHU. Strong laws of large numbers for arrays of rowwise mixing random variables[J]. Discrete Dynamics in Nature and Society,2007(74296):6.

[7] Y F WU, D J ZHU. Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables[J]. Journal of the Korean Statistical Society, 2000,39(2):189-197.

[8] S UTEV, M PELIGRAD. Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J]. Journal of Theoretical Probability, 2003,16(1):101-115.endprint

[2] P ERDOS. Remark on my paper “on a theorem of Hsu and Robbins”[J]. Annals of Mathematical Statistics, 1950,20:286-291.

[3] L E BAUM, M KATZ. Convergence rates in the law of large numbers[J]. Transactions of American Mathematical Society, 1965,120:108-123.

[4] Y S CHOW . On the rate of moment convergence of sample sums and extremes[J]. Bulletin of the Institute of Mathematics Academia Sinica. 1988.16:177-201.

[5] T C HU, R L TAYLOR. On the strong law for arrays and for the bootstrap mean and variance[J]. International Journal of Mathematics and Mathematical Science, 1997,20(2): 375-382.

[6] M H ZHU. Strong laws of large numbers for arrays of rowwise mixing random variables[J]. Discrete Dynamics in Nature and Society,2007(74296):6.

[7] Y F WU, D J ZHU. Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables[J]. Journal of the Korean Statistical Society, 2000,39(2):189-197.

[8] S UTEV, M PELIGRAD. Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J]. Journal of Theoretical Probability, 2003,16(1):101-115.endprint

[2] P ERDOS. Remark on my paper “on a theorem of Hsu and Robbins”[J]. Annals of Mathematical Statistics, 1950,20:286-291.

[3] L E BAUM, M KATZ. Convergence rates in the law of large numbers[J]. Transactions of American Mathematical Society, 1965,120:108-123.

[4] Y S CHOW . On the rate of moment convergence of sample sums and extremes[J]. Bulletin of the Institute of Mathematics Academia Sinica. 1988.16:177-201.

[5] T C HU, R L TAYLOR. On the strong law for arrays and for the bootstrap mean and variance[J]. International Journal of Mathematics and Mathematical Science, 1997,20(2): 375-382.

[6] M H ZHU. Strong laws of large numbers for arrays of rowwise mixing random variables[J]. Discrete Dynamics in Nature and Society,2007(74296):6.

[7] Y F WU, D J ZHU. Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables[J]. Journal of the Korean Statistical Society, 2000,39(2):189-197.

[8] S UTEV, M PELIGRAD. Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J]. Journal of Theoretical Probability, 2003,16(1):101-115.endprint

主站蜘蛛池模板: 国产污视频在线观看| 在线观看亚洲精品福利片| 日韩 欧美 国产 精品 综合| 国产精品亚洲一区二区三区在线观看| 亚洲最大看欧美片网站地址| 色婷婷电影网| 精品久久久无码专区中文字幕| 欧美成人一区午夜福利在线| 国产视频自拍一区| 亚洲中文字幕在线观看| 日本亚洲最大的色成网站www| 亚洲人成网址| 亚洲欧美另类视频| 午夜国产理论| 激情爆乳一区二区| 波多野结衣中文字幕一区二区| 亚洲欧美另类日本| av色爱 天堂网| 91日本在线观看亚洲精品| 97国产精品视频人人做人人爱| 欧美视频免费一区二区三区| 日韩av高清无码一区二区三区| 精品偷拍一区二区| 青青草原国产免费av观看| 国产精品第一区| 国产成人一区| 婷婷六月天激情| 久久永久免费人妻精品| 日韩国产亚洲一区二区在线观看| 青青草国产在线视频| 日本亚洲成高清一区二区三区| 国产精品女人呻吟在线观看| 天天操天天噜| 亚洲一区二区三区国产精华液| 国模极品一区二区三区| 久草视频精品| 亚洲天堂日本| 国产啪在线| 亚洲一区国色天香| 国产永久在线视频| 思思热在线视频精品| 特级精品毛片免费观看| 72种姿势欧美久久久大黄蕉| 日韩经典精品无码一区二区| 高潮毛片无遮挡高清视频播放| 亚洲欧洲综合| 搞黄网站免费观看| 综合人妻久久一区二区精品| 成人在线观看不卡| 青青草原国产av福利网站| 欧美在线三级| 精品成人免费自拍视频| 福利国产微拍广场一区视频在线| 欧美精品亚洲精品日韩专| 国产欧美日韩91| 国产区成人精品视频| 欧美成人第一页| 亚洲男人天堂久久| 国产手机在线观看| 国产网站黄| 黄色a一级视频| 亚洲日韩精品欧美中文字幕 | 久久国产拍爱| 国产精品女主播| 国产午夜人做人免费视频中文| 日韩中文精品亚洲第三区| 亚洲AV色香蕉一区二区| 久夜色精品国产噜噜| 国产日韩欧美在线视频免费观看| 亚洲国产AV无码综合原创| 国产91小视频在线观看| 亚洲三级色| 99re热精品视频国产免费| 久久黄色毛片| 2022国产91精品久久久久久| 国产综合亚洲欧洲区精品无码| 99国产在线视频| 日本欧美一二三区色视频| 激情无码视频在线看| 国产无吗一区二区三区在线欢| 国产91九色在线播放| 国产青榴视频在线观看网站|