南江霞
摘 要 基于梯形直覺模糊數的值和模糊度兩個特征,一類梯形直覺模糊數的排序方法被研究.首先,給出了梯形直覺模糊數的定義、運算法則和截集.其次,定義了梯形直覺模糊數關于隸屬度和非隸屬度的值和模糊度,以及值的指標和模糊度的指標.最后,給出了梯形直覺模糊數的排序方法,并將其應用到屬性值為梯形直覺模糊數的多屬性決策問題中.
關鍵詞 梯形直覺模糊數;梯形直覺模糊數的排序;多屬性決策
中圖分類號 C934 文獻標識碼 A
A Ranking Method of Trapezoidal Intuitionistic Fuzzy
Numbers and the Application to Decision Making
NAN Jiangxia
(School of Mathematics and Computing Science,Guilin University of Electronic Technology, Guilin, Guangxi 541004,China)
Abstract The ranking of trapezoidal intuitionistic fuzzy numbers (TIFNs) was solved by the value and ambiguity based ranking method developed in this paper. Firstly, the concept of TIFNs was introduced, and arithmetic operations and cut sets over TIFNs were investigated. Then, the values and ambiguities of the membership degree and the non-membership degree for TIFNs were defined as well as the valueindex and ambiguityindex. Finally, a value and ambiguity based ranking method was developed and applied to solve multiattribute decision making problems in which the ratings of alternatives on attributes were expressed using TIFNs. A numerical example was examined to demonstrate the implementation process and applicability of the method proposed.
Key words trapezoidal intuitionistic fuzzy number; ranking of trapezoidal intuitionistic fuzzy numbers; multiattribute decision making
1 引 言
Atanassov[1,2]提出的直覺模糊集(intuitionistic fuzzy)是模糊集的擴展,引起許多學者的關注,取得了大量研究成果.直覺模糊集已經被成功應用到一些領域,如:多屬性決策[3,4]、醫療診斷[5]、模式識別[6]等領域.直覺模糊數是一類特殊的直覺模糊集,更容易表示一些實際問題中的不確定的量.直覺模糊數受到了一些研究者的關注,已經定義了幾種類形的直覺模糊數及其相應的排序方法. Mitchell[7]將直覺模糊數定義為模糊數的全體,介紹了一個直覺模糊數的排序方法. Nayagam et al [8] 定義了一類直覺模糊數,將Chen 與 Hwang[9]提出的模糊數的得分(scoring)推廣到直覺模糊數,給出了直覺模糊數的排序方法. Grzegoraewski[10] 定義了一類直覺模糊數及其期望區間,并給出了一種直覺模糊數的排序方法. Shu 等[11] 通過增加一個非隸屬度,定義了一類三角直覺模糊數,但沒有給出其排序方法. Nan[12]等研究了文獻[11]的三角直覺模糊數的均值排序方法,并將該方法應用于直覺模糊矩陣對策問題. Li[13]進一步研究了三角直覺模糊數的比率排序方法,并將該方法應用于多屬性決策問題.Zhang[14]等研究了三角直覺模糊數的折中率排序方法,并將該方法應用于多屬性決策問題.梯形直覺模糊數是三角模糊數的推廣,王堅強等[15]將文獻[11]中的三角直覺模糊數的定義推廣到梯形直覺模糊數,并根據梯形直覺模糊數的期望值區間對此類梯形直覺模糊數進行排序.萬樹平[16]等研究方案屬性值為梯形直覺模糊數的多屬性群決策問題,給出了一種基于可能性均值-方差的梯形直覺模糊數的排序方法.目前研究梯形直覺模糊數排序的文獻比較匱乏.因此,本文研究一類梯形直覺模糊數的排序方法,將該方法應用到多屬性決策問題中.本文提出的方法根據梯形直覺模糊數的值和模糊度(ambiguity)的指標,將梯形直覺模糊數的排序轉化為實數的比較,方法原理簡單、計算量小、易于實現.
2 梯形直覺模糊數的基本概念
2.1 梯形直覺模糊數的定義與運算法則
梯形直覺模糊數是特殊的直覺模糊數,又是三角直覺模糊數和梯形模糊數的推廣,其表述簡單,在模糊決策問題中便于表示不確定的量.首先給出梯形直覺模糊數的定義為:
5 小 結
本文討論了梯形直覺模糊數的兩個特征:值與模糊度,定義了梯形直覺模糊數的值的指標和模糊度的指標.基于這兩個指標給出了梯形直覺模糊數的排序方法.并且將提出的排序方法用于解決屬性值為梯形直覺模糊數的多屬性決策問題,說明提出的排序方法容易實施且有直觀的解釋. 由于梯形直覺模糊數是梯形模糊數的推廣,其他已有的梯形模糊數的排序方法也可以拓展到梯形直覺模糊數的排序中,今后將研究更有效的梯形直覺模糊數的排序方法.endprint
參考文獻
[1] K T ATANASSOV. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.
[2] K T ATANASSOV, Intuitionistic fuzzy sets:theory and Applications [M]. Heidelberg: PhysicaVerlag HD, 1999.
[3] D F LI, Y C WANG, S LIU. Fractional programming methodology for multiattribute group decisionmaking using IFS [J]. Applied Soft Computing, 2009, 9(1): 219-225.
[4] D F LI. Extension of the LINMAP for multiattribute decision making under atanassov intuitionistic fuzzy environment [J]. Fuzzy Optimization and Decision Making, 2008, 7(1): 17-34.
[5] S K DE, R BISWAS, A R ROY. An application of intuitionistic fuzzy sets in medical diagnosis [J]. Fuzzy Sets and Systems, 2001, 117(6): 209-213.
[6] D F LI, C T CHENG. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions [J]. Pattern Recognition Letters, 2002, 23(4): 221-225.
[7] H B MITCHELL. Ranking intuitionistic fuzzy numbers[J]. International Journal of Uncertainty Fuzziness and Knowledge Based Systems, 2004, 12(3): 377-386.
[8] V G NAYAGAM, G VENKATESHWARI, G SIVARAMAN. Ranking of intuitionistic fuzzy numbers [C]//IEEE International Conference on Fuzzy Systems,Hong Kong, 2008: 1973-1976.
[9] S J CHEN, C L HWANG. Fuzzy multiple attribute decision making [M]. New York: Spring Verlag, Berlin Heildelberg, 1992.
[10]P GRZEGRORZEWSKI. The hamming distance between intuitionistic fuzzy sets [C]//The Proceeding of the IFSA 2003 World Congress, ISTANBUL, 2003.
[11]M H SHU, C H CHENG, J R CHANG. Using intuitionistic fuzzy sets for faulttree analysis on printed circuit board assembly[J]. Microelectronics Reliability, 2006, 46(2): 2139–2148.
[12]J X NAN, D F LI, M J ZHANG. A lexicographic method for matrix games with payoffs of triangular intuitionistic fuzzy numbers[J]. International Journal of Computational Intelligence Systems, 2010,3(3):280-289.
[13]D F LI. A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems [J]. Computers and Mathematics with Applications. 2010, 60(6): 1557-1570.
[14]M J ZHANG, J X NAN. A compromise ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems[J].Iranian Journal of Fuzzy Systems, 2013,10(6), 21-37.
[15]王堅強, 張忠. 基于直覺模糊數的信息不完全的多準則規劃方法[J]. 控制與決策, 2009, 24 (2): 226-230.
[16]萬樹平, 董九英. 多屬性群決策的直覺梯形模糊數法[J]. 控制與決策, 2010, 25(5): 773-776.
[17]D DUBOIS, H PRADE. Fuzzy Sets and Systems: Theory and Applications[M]. Mathematics in Science and Engineering 144 Academic Press, New York, 1980.
[18]趙雪婷, 楊辰陸, 秋君. 基于具有LR型模糊輸出回歸模型的上證指數預測[J]. 經濟數學, 2013, 30(4): 106-110.
[19]X WANG, E E KERRE. Reasonable properties for the ordering of fuzzy quantities (I) [J].Fuzzy Sets and Systems, 2001, 118(4): 375-385.endprint
參考文獻
[1] K T ATANASSOV. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.
[2] K T ATANASSOV, Intuitionistic fuzzy sets:theory and Applications [M]. Heidelberg: PhysicaVerlag HD, 1999.
[3] D F LI, Y C WANG, S LIU. Fractional programming methodology for multiattribute group decisionmaking using IFS [J]. Applied Soft Computing, 2009, 9(1): 219-225.
[4] D F LI. Extension of the LINMAP for multiattribute decision making under atanassov intuitionistic fuzzy environment [J]. Fuzzy Optimization and Decision Making, 2008, 7(1): 17-34.
[5] S K DE, R BISWAS, A R ROY. An application of intuitionistic fuzzy sets in medical diagnosis [J]. Fuzzy Sets and Systems, 2001, 117(6): 209-213.
[6] D F LI, C T CHENG. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions [J]. Pattern Recognition Letters, 2002, 23(4): 221-225.
[7] H B MITCHELL. Ranking intuitionistic fuzzy numbers[J]. International Journal of Uncertainty Fuzziness and Knowledge Based Systems, 2004, 12(3): 377-386.
[8] V G NAYAGAM, G VENKATESHWARI, G SIVARAMAN. Ranking of intuitionistic fuzzy numbers [C]//IEEE International Conference on Fuzzy Systems,Hong Kong, 2008: 1973-1976.
[9] S J CHEN, C L HWANG. Fuzzy multiple attribute decision making [M]. New York: Spring Verlag, Berlin Heildelberg, 1992.
[10]P GRZEGRORZEWSKI. The hamming distance between intuitionistic fuzzy sets [C]//The Proceeding of the IFSA 2003 World Congress, ISTANBUL, 2003.
[11]M H SHU, C H CHENG, J R CHANG. Using intuitionistic fuzzy sets for faulttree analysis on printed circuit board assembly[J]. Microelectronics Reliability, 2006, 46(2): 2139–2148.
[12]J X NAN, D F LI, M J ZHANG. A lexicographic method for matrix games with payoffs of triangular intuitionistic fuzzy numbers[J]. International Journal of Computational Intelligence Systems, 2010,3(3):280-289.
[13]D F LI. A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems [J]. Computers and Mathematics with Applications. 2010, 60(6): 1557-1570.
[14]M J ZHANG, J X NAN. A compromise ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems[J].Iranian Journal of Fuzzy Systems, 2013,10(6), 21-37.
[15]王堅強, 張忠. 基于直覺模糊數的信息不完全的多準則規劃方法[J]. 控制與決策, 2009, 24 (2): 226-230.
[16]萬樹平, 董九英. 多屬性群決策的直覺梯形模糊數法[J]. 控制與決策, 2010, 25(5): 773-776.
[17]D DUBOIS, H PRADE. Fuzzy Sets and Systems: Theory and Applications[M]. Mathematics in Science and Engineering 144 Academic Press, New York, 1980.
[18]趙雪婷, 楊辰陸, 秋君. 基于具有LR型模糊輸出回歸模型的上證指數預測[J]. 經濟數學, 2013, 30(4): 106-110.
[19]X WANG, E E KERRE. Reasonable properties for the ordering of fuzzy quantities (I) [J].Fuzzy Sets and Systems, 2001, 118(4): 375-385.endprint
參考文獻
[1] K T ATANASSOV. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.
[2] K T ATANASSOV, Intuitionistic fuzzy sets:theory and Applications [M]. Heidelberg: PhysicaVerlag HD, 1999.
[3] D F LI, Y C WANG, S LIU. Fractional programming methodology for multiattribute group decisionmaking using IFS [J]. Applied Soft Computing, 2009, 9(1): 219-225.
[4] D F LI. Extension of the LINMAP for multiattribute decision making under atanassov intuitionistic fuzzy environment [J]. Fuzzy Optimization and Decision Making, 2008, 7(1): 17-34.
[5] S K DE, R BISWAS, A R ROY. An application of intuitionistic fuzzy sets in medical diagnosis [J]. Fuzzy Sets and Systems, 2001, 117(6): 209-213.
[6] D F LI, C T CHENG. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions [J]. Pattern Recognition Letters, 2002, 23(4): 221-225.
[7] H B MITCHELL. Ranking intuitionistic fuzzy numbers[J]. International Journal of Uncertainty Fuzziness and Knowledge Based Systems, 2004, 12(3): 377-386.
[8] V G NAYAGAM, G VENKATESHWARI, G SIVARAMAN. Ranking of intuitionistic fuzzy numbers [C]//IEEE International Conference on Fuzzy Systems,Hong Kong, 2008: 1973-1976.
[9] S J CHEN, C L HWANG. Fuzzy multiple attribute decision making [M]. New York: Spring Verlag, Berlin Heildelberg, 1992.
[10]P GRZEGRORZEWSKI. The hamming distance between intuitionistic fuzzy sets [C]//The Proceeding of the IFSA 2003 World Congress, ISTANBUL, 2003.
[11]M H SHU, C H CHENG, J R CHANG. Using intuitionistic fuzzy sets for faulttree analysis on printed circuit board assembly[J]. Microelectronics Reliability, 2006, 46(2): 2139–2148.
[12]J X NAN, D F LI, M J ZHANG. A lexicographic method for matrix games with payoffs of triangular intuitionistic fuzzy numbers[J]. International Journal of Computational Intelligence Systems, 2010,3(3):280-289.
[13]D F LI. A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems [J]. Computers and Mathematics with Applications. 2010, 60(6): 1557-1570.
[14]M J ZHANG, J X NAN. A compromise ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems[J].Iranian Journal of Fuzzy Systems, 2013,10(6), 21-37.
[15]王堅強, 張忠. 基于直覺模糊數的信息不完全的多準則規劃方法[J]. 控制與決策, 2009, 24 (2): 226-230.
[16]萬樹平, 董九英. 多屬性群決策的直覺梯形模糊數法[J]. 控制與決策, 2010, 25(5): 773-776.
[17]D DUBOIS, H PRADE. Fuzzy Sets and Systems: Theory and Applications[M]. Mathematics in Science and Engineering 144 Academic Press, New York, 1980.
[18]趙雪婷, 楊辰陸, 秋君. 基于具有LR型模糊輸出回歸模型的上證指數預測[J]. 經濟數學, 2013, 30(4): 106-110.
[19]X WANG, E E KERRE. Reasonable properties for the ordering of fuzzy quantities (I) [J].Fuzzy Sets and Systems, 2001, 118(4): 375-385.endprint