999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Group von Neumann Algebra?

2014-11-02 08:36:08AhmetniyazAhmetjanTurdebekBekjan

Ahmetniyaz Ahmetjan,Turdebek N Bekjan

(College of Mathematics and System Sciences,Xinjiang University,Urumqi,Xinjiang 830046,China)

Abstract: Let G be a discrete group with a left regular representation λ,VN(G)is a group von Neumann algebra generated by λ(g).We characterize the Hardy space on the group von Neumann Algebra.

Key words:group von Neumann algebra,Fourier series,Hardy space,outer operators

0 Introduction

LetGis a discrete group,l2(G)is a Hilbert space.Let(δg)g∈Gbe the canonical basis ofl2(G),i.e.,δgis the function on G that takes value 1 atgand zero elsewhere.Let λ :G→B(l2(G))be the left regular representation.Namely,for anyg∈G,λ(g)is the unitary operator onl2(G)de fined by

Note that λ(g)δh=δghfor allg,h∈G.The reducedC??algebra(G)and the group von Neumann algebraVN(G)ofGare respectively theC??subalgebra and von Neumann subalgebra ofB(l2(G))generated by{λ(g):g∈G}.Let C(G)be the family of all finite sums Σα(g)λ(g)with α(g)∈C.Then it’s norm closure and w*-closure are(G)andVN(G)respectively.

Givenx∈VN(G),we consider the vector state τG(x)=<δe,xδe>whereedenotes the identity element ofG.Thus τ is a faithful normal tracial state onVN(G).

Thus(VN(G),τG)is noncommutative probability space,we called noncommutative group von Neumann Algebra.LetLp(VN(G),τG)denoted theLpspace over the noncommutative measure space(VN(G),τG)-so called noncommutativeLpspace.

In general for anyx∈Lp(VN(G,τG)(forp≥1)has a Fourier series

In the section 3 we consider the convergence of this Fourier series and properties of the Fourier coefficients.

In the section 4 we characterize the specific form of the Hardy space on the group von Neumann Algebra mentioned above.To this end we recall de finition of the finite subdiagonal algebra in Arveson’s[1]sense.LetMbe a finite von Neumann algebra equipped with a normal faithful tracial state τ.

De finition 1LetDbe a von Neumann subalgebra of M,and let Φ :M→Dbe the unique normal faithful conditional expectation such that τ?Φ=τ.A finite subdiagonal algebra ofMsatisfying following conditions

(i)A+A?is w*-dense inM;

(ii)Φ is multiplicative onA,i.e.,Φ(ab)=Φ(a)Φ(b)for alla,b∈A;

(iii)ATA?=D.whereA?is the family of the adjoints of the elements ofA,i.e.,A?={a?:a∈A}.

The algebraDis called thediagonalofA.It’s proved by Exel[2]that a finite subdiagonal algebraAis automatically maximal.This maximality yields the following useful characterization ofA

whereA0=ATkerΦ(see[1]).We will use the following notation:IfSis a subset ofLp(M),[S]pwill denote the closure ofSinLp(M)(with respect to thetopology in the case ofp=∞).Forp<∞we de fineHp(A)to be the closure ofAinLp(M).ThusHp(A)=[A]p.Formula(1)admits the followingHp(A)analogue proved by Saito[3]

Starting with the Arveson’s pioneer work these noncommutative Hardy spaces have received a lot of attention,Most results on the classical hardy spaces on the torus have been established in this noncommutative settings,and achieved outstanding progress on it(see[4~7]for some recent works).In this paper we give the specific form of the Hardy space on the group von Neumann Algebra.The last section contains some results in outer operators on this hardy space.We improved the Riesz type factorization(Theorem 3).

1 Preliminaries

Previous section we give de finition of C(G),VN(G)andLp(VN(G))there is some elementary results about those spaces.Besides some other conclusions will be used in section 3 and 4.

Theorem 1Let 1 ≤p< ∞,and let C(G)be the family of all finite sumsPα(g)λ(g)with α(g)∈ C,then C(G)dense inLp(VN(G)),wherep≥1.

ProofSince C(G)?Lp(VN(G)),we get[C(G)]p?Lp(VN(G)).

If[C(G)]p,Lp(VN(G))then?x0∈Lp(VN(G)),butx0

We will describeVN(G)as the left convolution algebra ofl2(G).Recall that for every ?,ψ ∈l2(G),their convolution is de fined by

??ψ is a bounded function onG.In general,it does not belongs tol2(G).Letx∈VN(G)and let ?=xδe,the symbol ofx,then ?∈l2(G)andxψ=??ψ(see[8]157).

Proposition 1x∈VN(G)i ffthere exists ?∈l2(G)such thatxψ=??ψ for every ψ∈l2(G).

2 Group von Neumann Algebra’s Fourier Theory

Proposition 1 allowed us to identify an operatorx∈VN(G)with it’s symbolxδeinl2(G),then this identi fication extends to a unitary operator fromL2(VN(G))tol2(G).This allows us to de fine the symbol of anyx∈L2(VN(G)).In general for anyp≥1 we can de fine the symbol ofx∈Lp(VN(G))as the function ?xonGgiven by

Then ?xis a bounded function on G(majorized by kxkp).

Indeed,|?x(g)|=|τ(xλ(g?1))|≤kxkpkλ(g?1)kq=kxkp?g∈G,then

Therefore,we can symbolically write

The sum on the right is the Fourier series ofxin the basis{δg}g∈G.Same as the classical case[9]we denote the Fourier coefficients withg),i.e.,g)=?x(g).

Proposition 2We keep the notations above,Fourier coefficients have the following properties

ProofThe proof of the(i),(ii),(iv),(v),(vi)is obvious.We only sketch the proof of(iii)and(vii).Since

We get(iii).

(vii)(1)putx=λ(g),y=λ(h)then

(3)In generalx∈Lp(VN(G)),y∈Lq(VN(G)),thenxy∈Lr(VN(G))∞),then

From now on(G,≤)will be a countable totally ordered discrete group(order

(i)Thepartial sum

(ii)Thesquare Fej′er mean

Proposition 3The following are valid forx∈L2(VN(G))

(i)(Plancherel’s identity)

(ii)The operator x is equal to theL2(VN(G))limit of the sequence

(iii)The mapx→ {bx(g)}g∈Gis an isometry fromL2(VN(G))ontol2(G).

Proof

(ii)Sincex?SN(x)⊥SN(x),

We compute that

ThereforeSN(x)is a Cauchy sequence,henceSN(x)→y.On the other hand

It follows that τ((x?y)λ(g?1))=0,?g∈G,which implies that τ((x?y)λ(g))=0,?g∈G.Thusx=y.

(iii)LetT(?x(g)λ(g))=(?x(g))g∈GthenTis a liner map and injective isometry.It remains to show that it is surjective.

Indeed,given a sequence(?x(g))g∈G∈l2(G),g∈G|?x(g))|2< ∞.

Let ?x(gn),0 forn=1,2,3....,and ?x(g))=0 forg,gn,and

xnsupposen>mthen

From(ii)Txn→Tx(n→∞).Since

ThereforeTxn→(?x(g))g∈GSoTx→(?x(g))g∈G.

Lemma 1LetFN(x)is a square Fej′er mean then for everyxinL2(VN(G))we have

Proof

First consider the case thatx∈C(G)i.e.,

Therefore

In general,note thatFNis a bounded liner operator.Indeed

Forx∈Lp(VN(G))there existsxn∈C(G)such that

Theorem 2Letx∈L2(VN(G))then the square Fej′er meanFN(x)is converges to x.

ProofLetx∈L2(VN(G))then every ε>0,there existsxε∈C(G),such that

And kxε?FN(xε)k2→0,(N→∞)i.e.,there existsN0,for everyN>N0

and from Lemma 1 we get following for everyN>N0,

i.e.,the square Fej′er meanFN(x)is converges to x.

3 Group von Neumann Algebraic HPTheory

In this section we following the method which was mentioned in Introduction,give specific form of the Hardy space on the group von Neumann Algebra and some ordinary results on this space.

LetVN(G)is group von Neumann Algebra with a faithful normal tracial state τG.D={λ·1:λ ∈ C}be von Neumann subalgebra ofVN(G)and let Φ(x)= τ(x)1 which unique normal conditional expectation fromVN(G)toD.then satisfying the following(see[1])

(ii)Φ(ab)=Φ(a)Φ(b),?a,b∈A.

(iii)ATA?={λ·1:λ∈C}=D.

Therefore by the De finition 1Ais finite subdiagonal algebra ofVN(G)with respect to Φ,and automatically maximal.We characterize theHp(A)by the formula(1)and(2).First we have following easy checking results.

Lemma 2Let(G,≤)is a countable ordered discrete group,Ais finite subdiagonal algebra ofVN(G)with respect to Φ mentioned above,then

(i)A0=

(ii)H1={x|x∈L1(VN(G)):?x(g)=0,?g

Proof(i)For everyx∈A,i.e.

(ii)H1={x∈L1(VN(G)):τ(xy)=0 ?y∈A}.

Letx∈H1,ifg

Ify∈A0then there exists

Thusx∈H1,i.e.,H1?{x|x∈L1(VN(G)):?x(g)=0,?g

By the formula(3)and Lemma 2,we immediately have the following proposition.

Proposition 4Let(G,≤)is a countable ordered discrete group,VN(G)is a group von Neumann algebra.Then Hardy space on this algebra have a following form for 1

4 Outer Operators

This section we consider outer operators.All results are due to Blecher and Labuschagne[10]in the case of indices not less than one,and later completeness of casep<1 in[4]by Bekjan-Xu.

We starting with the following de finition of outer operators.

De finition 2Let 0

Following results bases on the Hardy space on the group von Neumann algebra mentioned in previous section.

Proposition 5Let 0

(i)his left outer (ii)his right outer (iii)his bilaterally outer (iv)?(Φ(h))=?(h)

ProofSinceis equivalent to ?(h)=?(Φ(h))>0.Moreover A is antisymmetry(i.e.,dimD=1),therefore by the corollary 4.6 in[4]proof is clear.

Proposition 6Let 0

ProofBy the Arverson-Labuschagne’s Jensen inequality(cf.[1],[4],[10]),

Whence the assertion because of the Corollary 4.9 in[4].

Proposition 7Let 0

ProofThis proof is similar to that of Proposition 6.An immediate consequence of Corollary 4.12 in[4].

Theorem 3Let 0

ProofIfthen by the Proposition 7 result is holds.If=0 then there existg0∈Gsuch thatFrom Proposition 2(iv)we get

Since ifg

Thereforex=λ(g0)h1h2,lety=λ(g0)h1,z=h2then

and

Since ifg

Remark 1In the paper[4]give the Riesz type factorization on the noncommutative Hardy space under condition?(x)>0.

主站蜘蛛池模板: 91青青草视频| 欧美一区国产| 99尹人香蕉国产免费天天拍| 国产网站免费观看| 99国产精品一区二区| 欧美一区二区三区国产精品| 亚洲天堂2014| 亚洲精品自产拍在线观看APP| 色综合久久久久8天国| 国产一级毛片yw| 一级一级一片免费| 免费网站成人亚洲| 久久国产免费观看| 精品伊人久久久久7777人| 亚洲中文字幕手机在线第一页| 特级毛片8级毛片免费观看| 九九九精品成人免费视频7| 特级毛片8级毛片免费观看| 亚洲精品色AV无码看| 免费一级毛片| 国产精品偷伦视频免费观看国产| 精品久久久久成人码免费动漫| 久久精品嫩草研究院| 性欧美在线| 国产精品久久久久鬼色| 国产亚洲日韩av在线| 精品撒尿视频一区二区三区| 国产在线观看一区二区三区| 色AV色 综合网站| 国外欧美一区另类中文字幕| 亚洲成人77777| 欧美特级AAAAAA视频免费观看| 99中文字幕亚洲一区二区| 亚洲天堂在线视频| a级毛片免费看| 动漫精品中文字幕无码| 久久国产精品夜色| 中文字幕亚洲另类天堂| 污视频日本| 免费不卡在线观看av| 99视频精品全国免费品| 成人福利在线视频| 88国产经典欧美一区二区三区| 久久久噜噜噜| 精品91在线| 在线观看免费黄色网址| 在线不卡免费视频| 国产一级小视频| AV无码无在线观看免费| 91美女视频在线| 亚洲国产成人综合精品2020| 高潮毛片免费观看| 91在线精品麻豆欧美在线| 国产激爽大片高清在线观看| 日韩中文无码av超清| 超薄丝袜足j国产在线视频| 99免费视频观看| 91亚洲免费视频| 激情综合图区| 亚洲中文久久精品无玛| 毛片手机在线看| 成人在线亚洲| 国产欧美精品一区二区| 婷婷午夜影院| 色哟哟国产精品| 99精品热视频这里只有精品7| 99这里只有精品免费视频| 99精品热视频这里只有精品7| 国产成人亚洲精品蜜芽影院| 国产黄色片在线看| 久久久久久高潮白浆| 亚亚洲乱码一二三四区| 日韩在线欧美在线| A级毛片高清免费视频就| 天天色天天综合网| 日日噜噜夜夜狠狠视频| 日韩欧美中文字幕在线韩免费| 国产精品视频第一专区| 亚洲中文无码h在线观看| 国产高清在线观看| 欧美黄网站免费观看| 久热re国产手机在线观看|