999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

灌漿期高溫對小麥旗葉中SOD和GR活性及相關基因表達量的影響

2014-11-22 11:14:07王春微孫愛清張杰道
山東農業科學 2014年10期

王春微 孫愛清 張杰道 等

摘要:以山農23和濟麥20為試驗材料,研究灌漿期(花后10~20 d)高溫對小麥旗葉中超氧化物歧化酶(SOD)和谷胱甘肽還原酶(GR)活性及相關基因表達量的影響。結果表明,在高溫脅迫條件下,山農23的SOD活性一直顯著高于對照,而濟麥20的SOD活性變化呈先升高后降低的趨勢。山農23中Fe-SOD和Mn-SOD表達量的變化與SOD活性的變化趨勢相似,但Cu/Zn-SOD表達量的變化與SOD活性的變化趨勢不同。濟麥20中3個SOD基因表達量的變化均與SOD活性的變化基本一致。高溫脅迫條件下兩個小麥品種的GR活性均呈現先升高后降低的趨勢,山農23中GR表達量的變化與GR活性的變化趨勢基本一致,濟麥20中GR表達量的變化早于GR活性的變化。總體來看,高溫脅迫條件下山農23具有較強的抗氧化能力,Fe-SOD和Mn-SOD基因對SOD活性起主要作用,抗氧化酶相關基因對灌漿期高溫脅迫的響應比酶活性更敏感。

關鍵詞:小麥;高溫;超氧化物歧化酶;谷胱甘肽還原酶;基因表達

中圖分類號:S512.103.4文獻標識號:A文章編號:1001-4942(2014)10-0030-05

3討論與結論

高溫引起抗氧化酶活性的改變可能因植物物種、品種、脅迫強度和脅迫持續時間的不同而異。Hu等[18]通過試驗發現高溫脅迫(42℃,1 h)能增加玉米葉片中SOD和GR的活性。Xue等[19]發現高溫使水稻苗中SOD活性顯著高于對照。本研究發現,高溫處理過程中山農23的SOD活性一直高于對照,濟麥20的SOD活性變化呈現先升高后降低的趨勢;兩個品種的GR活性雖然都呈先升高后降低的趨勢,但是濟麥20開始下降的時間早于山農23。表明高溫脅迫對不同耐熱性小麥品種的抗氧化酶活性的影響不同,山農23有較高的抗氧化酶活性和較強的耐熱性。

高溫引發各種植物響應,包括調控基因的表達。研究在RNA水平上的基因表達與植物耐熱性的關系,能對抗氧化酶激活機制有更深入地了解,而不僅僅停留在酶活性方面。本研究發現,濟麥20中三種SOD基因的變化趨勢與酶活性的變化趨勢基本一致。山農23中Fe-SOD和Mn-SOD在處理過程中的變化趨勢與高溫處理條件下SOD活性的變化趨勢基本一致,但是Cu/Zn-SOD在處理2 d后表達量一直低于對照,這與SOD活性的變化趨勢不一致。前人許多試驗也發現非生物脅迫過程中Cu/Zn-SOD的轉錄水平的變化與SOD變化不完全一致。Xu等[10]研究發現早熟禾中葉綠體Cu/Zn-SOD與細胞質Cu/Zn-SOD在干旱脅迫后轉錄水平顯著升高,但是SOD活性卻呈下降的趨勢。Kurepa等 (1997)[20]通過研究發現Cu2+過量積累能使葉綠體Cu/Zn-SOD上調,但是SOD活性沒有發生顯著變化。綜上所述,Fe-SOD和Mn-SOD在抵抗高溫損傷方面起重要作用。

山農23的GR轉錄水平的變化比酶活性的變化早2 d,說明抗氧化酶相關基因對高溫脅迫的響應較酶活性更敏感。值得注意的是,在高溫處理條件下濟麥20的GR基因表達量在處理4 d時開始下調,但酶活性在8 d開始低于對照,原因可能是GR在處理前期超表達或者GR活性的變化不是由轉錄水平調控的,更可能受轉錄后水平調控。

參考文獻:

[1]Maestri E, Klueva N, Perrotta C, et al. Molecular genetics of heat tolerance and heat shock proteins in cereals[J]. Plant Molecular Biology, 2002, 48(5/6): 667-681.

[2]Hasanuzzaman M, Nahar K, Alam M M, et al. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants[J]. International Journal of Molecular Sciences, 2013, 14(5): 9643-9684.

[3]Melchiorre M, Robert G A N, Trippi V, et al. Superoxide dismutase and glutathione reductase overexpression in wheat protoplast: photooxidative stress tolerance and changes in cellular redox state[J]. Plant Growth Regulation, 2009, 57(1): 57-68.

[4]Miller G, Suzuki N, Ciftci-Yilmaz S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant, Cell & Environment, 2010, 33(4): 453-467.

[5]De Pinto M C, Locato V, De Gara L. Redox regulation in plant programmed cell death[J]. Plant, Cell & Environment, 2012, 35(2): 234-244.

[6]Farooq M, Aziz T, Hussain M, et al. Glycinebetaine improves chilling tolerance in hybrid maize[J]. Journal of Agronomy and Crop Science, 2008, 194(2): 152-160.

[7]Gupta N K, Agarwal S, Agarwal V P, et al. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings[J]. Acta Physiologiae Plantarum, 2013,35(6):1837-1842.

[8]馬旭俊,朱大海. 植物超氧化物歧化酶(SOD)的研究進展[J]. 遺傳,2003, 25(2): 225-231.

[9]Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism[J]. Planta, 1976, 133(1): 21-25.

[10]Xu L, Han L, Huang B. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery[J]. Journal of the American Society for Horticultural Science, 2011, 136(4): 247-255.

[11]Almeselmani M, Deshmukh P S, Sairam R K. High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes[J]. Acta Agronomica Hungarica, 2009, 57(1): 1-14.

[12]Sairam R K, Srivastava G C, Saxena D C. Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes[J]. Biologia Plantarum, 2000, 43(2): 245-251.

[13]Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging[J]. Photosynthetica, 2008, 46(1): 21-27.

[14]Arakawa N, Tsutsumi K, Sanceda N G, et al. A rapid and sensitive method for the determination of ascorbic acid using 4, 7-diphenyl-l, 10-phenanthroline[J]. Agricultural and Biological Chemistry, 1981, 45(5): 1289-1290.

[15]Kanematsu S, Asada K. Characteristic amino acid sequences of chloroplast and cytosol isozymes of CuZn-superoxide dismutase in spinach, rice and horsetail[J]. Plant and Cell physiology, 1990, 31(1): 99-112.

[16]Smith M W, Doolittle R F. A comparison of evolutionary rates of the two major kinds of superoxide dismutase[J]. Journal of Molecular Evolution, 1992, 34(2): 175-184.

[17]Ogawa K, Kanematsu S, Asada K. Intra-and extra-cellular localization of “cytosolic” CuZn-superoxide dismutase in spinach leaf and hypocotyl[J]. Plant and Cell Physiology, 1996, 37(6): 790-799.

[18]Hu X, Liu R, Li Y, et al. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress[J]. Plant Growth Regulation, 2010, 60(3): 225-235.

[19]Xue D, Jiang H, Hu J, et al. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings[J]. Plant Physiology and Biochemistry, 2012,61:46-53.

[20]Kurepa J, Van Montagu M, Inz E D. Expression of sodCp and sodB genes in Nicotiana tabacum: effects of light and copper excess[J]. Journal of Experimental Botany, 1997, 48(12): 2007-2014.

[7]Gupta N K, Agarwal S, Agarwal V P, et al. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings[J]. Acta Physiologiae Plantarum, 2013,35(6):1837-1842.

[8]馬旭俊,朱大海. 植物超氧化物歧化酶(SOD)的研究進展[J]. 遺傳,2003, 25(2): 225-231.

[9]Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism[J]. Planta, 1976, 133(1): 21-25.

[10]Xu L, Han L, Huang B. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery[J]. Journal of the American Society for Horticultural Science, 2011, 136(4): 247-255.

[11]Almeselmani M, Deshmukh P S, Sairam R K. High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes[J]. Acta Agronomica Hungarica, 2009, 57(1): 1-14.

[12]Sairam R K, Srivastava G C, Saxena D C. Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes[J]. Biologia Plantarum, 2000, 43(2): 245-251.

[13]Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging[J]. Photosynthetica, 2008, 46(1): 21-27.

[14]Arakawa N, Tsutsumi K, Sanceda N G, et al. A rapid and sensitive method for the determination of ascorbic acid using 4, 7-diphenyl-l, 10-phenanthroline[J]. Agricultural and Biological Chemistry, 1981, 45(5): 1289-1290.

[15]Kanematsu S, Asada K. Characteristic amino acid sequences of chloroplast and cytosol isozymes of CuZn-superoxide dismutase in spinach, rice and horsetail[J]. Plant and Cell physiology, 1990, 31(1): 99-112.

[16]Smith M W, Doolittle R F. A comparison of evolutionary rates of the two major kinds of superoxide dismutase[J]. Journal of Molecular Evolution, 1992, 34(2): 175-184.

[17]Ogawa K, Kanematsu S, Asada K. Intra-and extra-cellular localization of “cytosolic” CuZn-superoxide dismutase in spinach leaf and hypocotyl[J]. Plant and Cell Physiology, 1996, 37(6): 790-799.

[18]Hu X, Liu R, Li Y, et al. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress[J]. Plant Growth Regulation, 2010, 60(3): 225-235.

[19]Xue D, Jiang H, Hu J, et al. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings[J]. Plant Physiology and Biochemistry, 2012,61:46-53.

[20]Kurepa J, Van Montagu M, Inz E D. Expression of sodCp and sodB genes in Nicotiana tabacum: effects of light and copper excess[J]. Journal of Experimental Botany, 1997, 48(12): 2007-2014.

[7]Gupta N K, Agarwal S, Agarwal V P, et al. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings[J]. Acta Physiologiae Plantarum, 2013,35(6):1837-1842.

[8]馬旭俊,朱大海. 植物超氧化物歧化酶(SOD)的研究進展[J]. 遺傳,2003, 25(2): 225-231.

[9]Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism[J]. Planta, 1976, 133(1): 21-25.

[10]Xu L, Han L, Huang B. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery[J]. Journal of the American Society for Horticultural Science, 2011, 136(4): 247-255.

[11]Almeselmani M, Deshmukh P S, Sairam R K. High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes[J]. Acta Agronomica Hungarica, 2009, 57(1): 1-14.

[12]Sairam R K, Srivastava G C, Saxena D C. Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes[J]. Biologia Plantarum, 2000, 43(2): 245-251.

[13]Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging[J]. Photosynthetica, 2008, 46(1): 21-27.

[14]Arakawa N, Tsutsumi K, Sanceda N G, et al. A rapid and sensitive method for the determination of ascorbic acid using 4, 7-diphenyl-l, 10-phenanthroline[J]. Agricultural and Biological Chemistry, 1981, 45(5): 1289-1290.

[15]Kanematsu S, Asada K. Characteristic amino acid sequences of chloroplast and cytosol isozymes of CuZn-superoxide dismutase in spinach, rice and horsetail[J]. Plant and Cell physiology, 1990, 31(1): 99-112.

[16]Smith M W, Doolittle R F. A comparison of evolutionary rates of the two major kinds of superoxide dismutase[J]. Journal of Molecular Evolution, 1992, 34(2): 175-184.

[17]Ogawa K, Kanematsu S, Asada K. Intra-and extra-cellular localization of “cytosolic” CuZn-superoxide dismutase in spinach leaf and hypocotyl[J]. Plant and Cell Physiology, 1996, 37(6): 790-799.

[18]Hu X, Liu R, Li Y, et al. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress[J]. Plant Growth Regulation, 2010, 60(3): 225-235.

[19]Xue D, Jiang H, Hu J, et al. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings[J]. Plant Physiology and Biochemistry, 2012,61:46-53.

[20]Kurepa J, Van Montagu M, Inz E D. Expression of sodCp and sodB genes in Nicotiana tabacum: effects of light and copper excess[J]. Journal of Experimental Botany, 1997, 48(12): 2007-2014.

主站蜘蛛池模板: 在线色综合| 亚洲成a人片在线观看88| 国产女人喷水视频| 免费人成视网站在线不卡| 国产天天射| 国内99精品激情视频精品| 永久免费无码日韩视频| 亚洲αv毛片| 亚洲欧洲日韩综合色天使| 亚洲永久免费网站| 国产95在线 | 亚洲人成高清| 日韩无码黄色| 91精品视频播放| 久久这里只有精品国产99| 欧美特级AAAAAA视频免费观看| 九色在线视频导航91| 久久精品国产一区二区小说| 国产成本人片免费a∨短片| 亚洲三级影院| 日韩成人高清无码| 免费A级毛片无码无遮挡| 激情無極限的亚洲一区免费| 日韩黄色在线| 伊人色天堂| 日韩免费毛片| 中文字幕人妻av一区二区| 国产一级无码不卡视频| jizz国产视频| 亚洲侵犯无码网址在线观看| 国产精选小视频在线观看| 成年人福利视频| 国产亚洲欧美另类一区二区| www精品久久| 无码粉嫩虎白一线天在线观看| 午夜视频www| 试看120秒男女啪啪免费| 呦女亚洲一区精品| 国产免费福利网站| 国产在线拍偷自揄观看视频网站| 国产乱人伦偷精品视频AAA| 久久国产精品嫖妓| 色综合久久88| 天堂va亚洲va欧美va国产| 色婷婷电影网| 农村乱人伦一区二区| 国产成人精品亚洲77美色| 91精品小视频| 中文字幕天无码久久精品视频免费| 国产精品无码在线看| 97超级碰碰碰碰精品| 性网站在线观看| 国产精品视频猛进猛出| 99久久精品免费看国产免费软件| 久久精品这里只有精99品| 香港一级毛片免费看| 久久精品嫩草研究院| 亚洲国产黄色| 午夜性刺激在线观看免费| 色噜噜久久| 亚洲成人高清在线观看| 男女精品视频| 免费a在线观看播放| 欧美一区国产| 视频在线观看一区二区| 中文字幕资源站| 亚洲国产天堂久久综合| 99re热精品视频国产免费| 国产成人无码播放| 五月天综合婷婷| 欧美日本在线一区二区三区| 亚洲中文字幕精品| 久久亚洲天堂| 蜜臀AVWWW国产天堂| 国产JIZzJIzz视频全部免费| 欧美色99| 2021国产精品自产拍在线| 欧美一区二区丝袜高跟鞋| 99偷拍视频精品一区二区| 青青青亚洲精品国产| www.91中文字幕| 在线观看无码a∨|