999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

有關(guān)常系數(shù)非齊次三階偏微分方程在工程中的解法及推廣

2014-12-22 14:43:41韓志偉
科技與創(chuàng)新 2014年23期

韓志偉

摘? 要:在工程應(yīng)用中,有關(guān)偏微分方程解的具體形式往往能夠使復(fù)雜問題簡單化。在許多工程的實際問題中,雖然不同偏微分方程代表的實際意義各不相同,但卻具有完全相同形式的數(shù)學規(guī)律,因此,研究一般意義上的方程有助于解決實際應(yīng)用問題。主要研究了一般形式的常系數(shù)非齊次三階偏微分方程的解,并探討了常系數(shù)非齊次N階偏微分方程的特殊情況,得到了不同條件下解的形式。

關(guān)鍵詞:三階偏微分方程;常系數(shù);非齊次;余函數(shù)

中圖分類號:O175.14?????????? 文獻標識碼:A?? ????????????文章編號:2095-6835(2014)23-0104-02

近年來,有關(guān)偏微分方程解一直是熱點研究問題。在實際工程應(yīng)用中,對一般意義上的偏微分方程解的研究可以讓原本復(fù)雜的工程計算變得簡單。因此,本文討論了常系數(shù)非齊次三階偏微分方程的一般解,進而研究了N階常系數(shù)非齊次偏微分方程,從而得到了具體解的形式。

1? 常系數(shù)非齊次三階偏微分方程的一般解

三階偏微分方程的一般式為:

???????????????????????? (1)

方程式(1)可簡記為:

fDD′)z=φxt).??????????????????????? (2)

方程(1)的解由兩部分構(gòu)成,通解zn和余函數(shù)zp,可記為式(3):

z=zn+zp.?????????????????????????????????????? (3)

當方程(2)的右端φxt)=0時,通過解其對應(yīng)的齊次方程可得到通解:

fDD′)z=0.?????????????????????????????????? (4)

不妨假定齊次方程的通解形式為zn=cehx+k,其中,chk為待定常數(shù),代入方程(4)中可得:

cfhkehx+kt=0.???????????????????????????? (5)

其中,對應(yīng)的特征方程為:

fhk)=0.?????????????????????????????????? (6)

因此,齊次方程的通解zn必定具備該形式cehx+k.

在特征方程(6)中,如果能解出常數(shù)k的值,那么,(4)式中的D′必為r階的(r≥2),通解的表達式如下所示:

.??????? (7)

同理,在方程(6)中,如果能解出常數(shù)h的值,那么(4)式中的D′必為r階的(r≥2),通解的表達式如下所示:

.?????? (8)

根據(jù)方程(2),考慮其余函數(shù)的形式為:

.?????????????????????????? (9)

或者

.??????????? (10)

根據(jù)式(6)可得:

a1h3+a2h2k+a3hk2+a4k3+b1h2+b2hk+b3k2+c1h+c2k=0.??? (11)

其變形式為:

a1h3+(a2k+b1)h2+(a3k2+b2k+c1)h+(a4k3+b3k2+c2k)=0.????????????????? ????????????????????? (12)

令:A=(a2k+b1)-3a1(a3k3+b2k2+c1k);

B=(a2k+b1)(a3k2+b2k+c1)-9a1(a4k3+b3k2+c2k);

C=(a3k2+b2k+c1)2-3(a2k+b1)(a4k3+b3k2+c2k).

根據(jù)盛金定理可知,記Δ=B2-4AC. 由此可以得到以下結(jié)論。

情形1:當式(12)中A=B=0時,可解得:

.????????????????????????? (13)

情形2:當Δ>0時,則有:

.????????????????????????????? (14)

其中,i2=-1.

情形3:當Δ=0時,此時的形式較為簡單:

.????????? ??(15)

其中,A≠0).

情形4:當Δ<0時,解得:

.????? (16)

其中,θ=arccosTA>0,-1<T<1.

將上述結(jié)果代入式(7)和(10)中,可以得到一般三階方程解的一般形式。同理可得:

a4k3+(a3h+b3)h2+(a2h2+b2h+c2)k+(a1h3+b1h2+c1h)=0.

(17)

令:A1=(a3h+b3)-3a4(a1h3+b1h2+c1h);

B1=(a3h+b3)(a2h2+b2h+c2)-9a4(a1h3+b1h2+c1h);

C1=(a2h2+b2h+c2)2-3(a3h+b3)(a1h3+b1h2+c1h).

根據(jù)盛金定理可知,記Δ1=B12-4A1C1. 由此可以得到以下結(jié)論。

情形1′:在式(17)中,當A1=B1=0時,解得:

.??????????????????????? (18)

情形2′:當Δ1>0時,解得k的值為:

.???????? (19)

其中,i2=-1.

情形3′:當Δ1=0時,此時可以解出:

.???????? (20)

其中,A1≠0).

情形4′:當Δ1<0時,此時可以得到:

.?????????? (21)

其中,θ1=arccosT1,A1>0,

-1<T1<1.

根據(jù)不同的情形,將結(jié)果代入式(8)和(10)中,可以得到一般方程解的形式。

2? 常系數(shù)非齊次N階偏微分方程的一般解

對常系數(shù)非齊次N階偏微分方程而言,要得出其一般意義上的解并不容易。但是,當φxt)取一些特殊函數(shù)時,可以得到其解的具體形式。常系數(shù)非齊次N階偏微分方程的一般形式如下:

.

(22)

根據(jù)φxt)的不同取值,討論以下5種特殊情形。

情形1′′:當φxt)=cn1時,如果z具有zn1=An1xn形式的解,代入式(22)中求解。通過na0An1=cn1,可得解得系數(shù)

.

情形2′′:當φxt)=cn2x時,如果z具有zn2=An2xn+1形

式的解,代入式(22)中,由(n+1)!a0An2x=cn2x.

情形3′′:當φxt)=cn3t時,如果z具有zn3=An3tn+1形式的

解,代入式(22)中,由(n+1)!anAn3t=cn3t可得.

情形4′′:當φxt)=cn4x+cn5t時,如果z具有zn4= An4xnt+An5xn+1形式的解,代入式(22)中,則可以通過

得到.

情形5′′:當φxt)=cn6xt時,如果z具有zn5= An6xn+1t+An7xn+2

形式的解,代入式(22)中可以由

解得.

由于常系數(shù)非齊次N階偏微分方程解具有復(fù)雜性,所以,本文僅討論了5種解得的具體形式。當遇到具體工程問題時,可根據(jù)具體情形求解。

3? 結(jié)束語

本文僅研究了一般形式的常系數(shù)非齊次三階偏微分方程的解的一般式,在相應(yīng)的常系數(shù)非齊N階偏微分方程中,得到了部分函數(shù)對應(yīng)的特殊解的情況。在具體的工程應(yīng)用中,對更多不同情況的求解一定可以得到更多對現(xiàn)實問題有幫助的結(jié)果。

參考文獻

[1]Devi J Vasundhara.Generalized monotone method for periodic boundary value problems of Caputo fractional differential equations[J].Commun.Appl.Anal,2008,12(4):399-406.

[2]Yusufjon P.Apakov,Stasys Rutkauskas.On a boundary value problem to third order PDE with multiple characteristics[J].Nonlinear Analysis:Modelling and Control,2011,16(3):255-269.

〔編輯:白潔〕

The Methods and Generalizations of the Nonhomogeneous Three Order artial Differential

P Equation with Constant Coefficients in Engineering

Han Zhiwei

AbstractIn engineering application, the specific form of partial differential equations is often able to simplify the complex problem. Although the actual significance questions represented the different partial differential equations are not identical, the laws of mathematics has exactly the same form of many practical problems in engineering. The research on the general sense of the equation may contribute to the solution of practical problems. This paper mainly studies the general form of the constant coefficient non-homogeneous three order partial differential equation, and discusses the special condition of non-homogeneous Nth order partial differential equation with constant coefficients, and has obtained the solution under the different conditions.

Key words: third order partial differential equation; constant coefficient; non-homogeneous; complementary function

[2]Yusufjon P.Apakov,Stasys Rutkauskas.On a boundary value problem to third order PDE with multiple characteristics[J].Nonlinear Analysis:Modelling and Control,2011,16(3):255-269.

〔編輯:白潔〕

The Methods and Generalizations of the Nonhomogeneous Three Order artial Differential

P Equation with Constant Coefficients in Engineering

Han Zhiwei

AbstractIn engineering application, the specific form of partial differential equations is often able to simplify the complex problem. Although the actual significance questions represented the different partial differential equations are not identical, the laws of mathematics has exactly the same form of many practical problems in engineering. The research on the general sense of the equation may contribute to the solution of practical problems. This paper mainly studies the general form of the constant coefficient non-homogeneous three order partial differential equation, and discusses the special condition of non-homogeneous Nth order partial differential equation with constant coefficients, and has obtained the solution under the different conditions.

Key words: third order partial differential equation; constant coefficient; non-homogeneous; complementary function

[2]Yusufjon P.Apakov,Stasys Rutkauskas.On a boundary value problem to third order PDE with multiple characteristics[J].Nonlinear Analysis:Modelling and Control,2011,16(3):255-269.

〔編輯:白潔〕

The Methods and Generalizations of the Nonhomogeneous Three Order artial Differential

P Equation with Constant Coefficients in Engineering

Han Zhiwei

AbstractIn engineering application, the specific form of partial differential equations is often able to simplify the complex problem. Although the actual significance questions represented the different partial differential equations are not identical, the laws of mathematics has exactly the same form of many practical problems in engineering. The research on the general sense of the equation may contribute to the solution of practical problems. This paper mainly studies the general form of the constant coefficient non-homogeneous three order partial differential equation, and discusses the special condition of non-homogeneous Nth order partial differential equation with constant coefficients, and has obtained the solution under the different conditions.

Key words: third order partial differential equation; constant coefficient; non-homogeneous; complementary function

主站蜘蛛池模板: 久久久久久久久18禁秘 | 国产乱肥老妇精品视频| 亚洲中文字幕av无码区| 欧美精品黑人粗大| 欧美一级视频免费| 日本免费福利视频| 亚洲免费毛片| 天堂在线视频精品| 九九热视频在线免费观看| 亚洲AV成人一区国产精品| 激情乱人伦| 高潮爽到爆的喷水女主播视频| 18禁高潮出水呻吟娇喘蜜芽| 在线免费亚洲无码视频| 国产精品女同一区三区五区| 亚洲日本韩在线观看| 91视频国产高清| 国产成人禁片在线观看| 免费一级全黄少妇性色生活片| 国产精品三级专区| 91福利在线观看视频| 国产h视频免费观看| 国产99热| 最新日本中文字幕| 国产极品美女在线观看| 久久精品娱乐亚洲领先| 国产成人无码播放| 最新亚洲人成无码网站欣赏网 | 国产丝袜丝视频在线观看| 久一在线视频| 一级片一区| 蜜桃视频一区| 欧美精品综合视频一区二区| 中文字幕欧美成人免费| 国产精品成人久久| 91久久精品日日躁夜夜躁欧美| 69国产精品视频免费| 毛片三级在线观看| 亚洲欧洲AV一区二区三区| 黄色一级视频欧美| 制服丝袜一区| jijzzizz老师出水喷水喷出| 亚洲精品无码专区在线观看| 亚洲婷婷丁香| 欧美国产菊爆免费观看| 国产日韩欧美中文| 国产极品美女在线观看| a级毛片免费看| 亚洲男女在线| 午夜天堂视频| 国产美女在线免费观看| 午夜国产精品视频| 女高中生自慰污污网站| 国产清纯在线一区二区WWW| a毛片免费观看| a亚洲天堂| 蜜臀AVWWW国产天堂| 欧美精品在线免费| 亚洲二区视频| 精品一区二区无码av| 国产成人久久综合一区| 99999久久久久久亚洲| 久久无码免费束人妻| 亚洲欧洲日韩久久狠狠爱| 国产精品第5页| 成年女人a毛片免费视频| 亚洲一区色| 五月婷婷综合色| 88国产经典欧美一区二区三区| 91无码视频在线观看| 一级福利视频| 国产精品妖精视频| 最新精品久久精品| 日韩无码真实干出血视频| 国产91全国探花系列在线播放| 午夜视频www| 欧美在线精品一区二区三区| 在线不卡免费视频| 日本亚洲欧美在线| 欧美福利在线观看| 国产高清毛片| 日韩精品成人在线|