裴彥宇 高虹中國醫(yī)學(xué)科學(xué):醫(yī)學(xué)實驗動物研究所北京協(xié)和醫(yī)學(xué):比較醫(yī)學(xué)中心,北京100021
細(xì)胞色素P450 2E1的毒性機制研究進展
裴彥宇 高虹
中國醫(yī)學(xué)科學(xué):醫(yī)學(xué)實驗動物研究所北京協(xié)和醫(yī)學(xué):比較醫(yī)學(xué)中心,北京100021
細(xì)胞色素P450 2E1(CYP2E1)在生物體內(nèi)許多內(nèi)源性或外源性物質(zhì)的代謝過程中發(fā)揮著重要作用。CYP2E1主要分布在肝臟中,同時在肝外組織如心臟、腎臟等也有高表達。CYP2E1參與活性氧自由基的生成,引發(fā)氧化應(yīng)激反應(yīng)、脂質(zhì)過氧化反應(yīng)、炎性反應(yīng)和細(xì)胞凋亡等過程,進而對機體產(chǎn)生毒性,誘發(fā)脂肪性肝病、糖尿病及腫瘤等疾病。本文綜述了CYP2E1的毒性機制研究進展以及其在心臟毒性評價中的展望,其可能作為一個潛在的心臟毒性評價新指標(biāo)應(yīng)用于新藥安全性評價中。
細(xì)胞色素P450 2E1;氧化應(yīng)激;毒性;心臟毒性
人類細(xì)胞色素P450屬于亞鐵血紅素蛋白的超家族酶系,是微粒體混合功能氧化酶體系中最重要的一族氧化酶,在內(nèi)、外源性物質(zhì)的代謝失活或活化中起關(guān)鍵性作用,同時在藥物代謝和毒理學(xué)研究中也具有十分重要的地位。細(xì)胞色素P450 2E1(CYP2E1)是細(xì)胞色素P450超家族酶系的重要成員之一,它介導(dǎo)了多種化合物的代謝和氧化應(yīng)激反應(yīng),與多種疾病的發(fā)生密切相關(guān),同時被認(rèn)為是機體對環(huán)境、工業(yè)毒物或致癌物質(zhì)敏感程度的重要決定因素[1-3]。目前,研究最多的是CYP2E1的肝毒性以及致癌作用[4],雖有少數(shù)研究報道了CYP2E1與心臟疾病的關(guān)系,但關(guān)于CYP2E1對心臟的毒性作用以及與心臟疾病關(guān)系的研究仍不明確,因此揭示CYP2E1的毒性機制將有助于研究CYP2E1在心臟中的作用和CYP2E1的心臟毒性。本文綜述了目前CYP2E1的毒性機制研究進展以及其在心臟毒性評價中的展望。
最初CYP2E1于1984年從兔肝微粒體中提取純化出來,隨后在其他動物及人體內(nèi)也發(fā)現(xiàn)了CYP2E1的存在。CYP2E1是一種主要存在于內(nèi)質(zhì)網(wǎng)上的蛋白質(zhì)[5],有研究表明,CYP2E1也存在于線粒體上[6]。CYP2E1在體內(nèi)組織中廣泛分布,肝臟是CYP2E1的主要分布部位。目前已知CYP2E1的底物多達70余種,其中大多為前毒物和前致癌物,少數(shù)為藥物如對乙酰氨基酚等[7]。脂肪酸、酒精[8]等內(nèi)外源物質(zhì)、高脂食物[9]、饑餓[10]、糖尿病[11]等均可誘導(dǎo)CYP2E1的活化,CYP2E1參與活性氧自由基(ROS)的生成,引發(fā)氧化應(yīng)激反應(yīng)、脂質(zhì)過氧化反應(yīng)、炎性反應(yīng)和細(xì)胞凋亡等過程,進而損傷細(xì)胞和有機體整體的本質(zhì)結(jié)構(gòu)和功能,對機體產(chǎn)生毒性。CYP2E1在表達和功能活性上有種屬差異性[12],CYP2E1的基因多態(tài)性決定了其在不同疾病發(fā)生中的不同敏感性。
2.1 CYP2E1與氧化應(yīng)激反應(yīng)的關(guān)系
氧化應(yīng)激反應(yīng)在許多疾病的病理機制中都很重要,如肝臟疾病、阿爾茲海默癥、癌癥、糖尿病、心血管疾病等[13-15]。CYP2E1酶催化一系列的化學(xué)反應(yīng),如過氧化反應(yīng)、脫烷基化反應(yīng)、單加氧反應(yīng)、還原反應(yīng)、環(huán)氧化反應(yīng)和脫鹵反應(yīng)[16]。CYP2E1在代謝一些低分子量的化合物如乙醇、脂肪酸、對乙酰氨基酚等過程中,產(chǎn)生ROS如O2-·、H2O2、·OH[17],CYP2E1產(chǎn)生ROS是一個連續(xù)的過程[18]。
ROS產(chǎn)生于線粒體呼吸鏈、細(xì)胞色素P450系統(tǒng)、氧化酶(如NADPH氧化酶復(fù)合體、黃嘌吟氧化酶等)[19]。在肝細(xì)胞中,ROS主要在線粒體、過氧化物酶體、滑面內(nèi)質(zhì)網(wǎng)上生成。CYP2E1在發(fā)揮催化作用的過程中,利用來自NADH/NADPH的H+,與細(xì)胞中的O2結(jié)合,由于O2的不完整消耗,生成的ROS作用于DNA、RNA和蛋白質(zhì)等大分子化合物,引起DNA和RNA損傷、蛋白質(zhì)變性、酶失活等一系列的氧化應(yīng)激反應(yīng),進而產(chǎn)生細(xì)胞毒性[20-21],CYP2E1的活性依賴于氧活性。NADPH氧化酶復(fù)合體可以氧化包括巨噬細(xì)胞和中性粒細(xì)胞在內(nèi)所產(chǎn)生的ROS,ROS在信號轉(zhuǎn)導(dǎo)通路、細(xì)胞生理學(xué)和代謝途徑中至關(guān)重要。
機體內(nèi)許多酶或非酶抗氧化劑可以將ROS維持在生理水平,包括超氧化物歧化酶(SOD)、過氧化氫酶、谷胱甘肽過氧化物酶、谷胱甘肽轉(zhuǎn)移酶、血紅素加氧酶、血漿銅藍(lán)蛋白、鐵蛋白、谷胱甘肽(GSH)、維生素E、維生素A、維生素C、尿酸、膽紅素[22],以避免ROS引起的細(xì)胞損傷。在非生理狀態(tài)下,ROS生成和消除的速率之間存在平衡,來修復(fù)ROS誘導(dǎo)的細(xì)胞損傷。中、高濃度的ROS引發(fā)氧化應(yīng)激反應(yīng),隨后導(dǎo)致細(xì)胞凋亡和細(xì)胞壞死。ROS也參與了不飽和脂肪酸誘導(dǎo)生成有毒脂質(zhì)中間體的自由基連鎖反應(yīng),在鐵離子的存在下,該反應(yīng)被級聯(lián)放大,脂質(zhì)過氧化反應(yīng)改變細(xì)胞膜的完整性,進而損傷DNA和蛋白質(zhì)。
有研究發(fā)現(xiàn),在肝特異性CYP2E1高表達的轉(zhuǎn)基因小鼠中,表現(xiàn)出更多的氧化應(yīng)激反應(yīng)和氮化應(yīng)激反應(yīng),導(dǎo)致肝細(xì)胞組織損傷,同時抗氧化酶Nrf2、CAT、GPx、HO-1基因表達有所下調(diào),而一氧化氮合成酶(iNOS)的活性和SOD的亞硝基化有所上調(diào)[23],表明CYP2E1可能同時與氧化應(yīng)激和氮化應(yīng)激有關(guān)。
2.2 GSH含量對CYP2E1誘發(fā)氧化應(yīng)激反應(yīng)的影響
在體內(nèi)實驗中發(fā)現(xiàn),乙醇誘導(dǎo)的脂質(zhì)過氧化反應(yīng)原因是ROS的生成和抗氧化劑如GSH的減少[24]。GSH是在胞質(zhì)中合成,后轉(zhuǎn)移并定位于線粒體中。肝臟是產(chǎn)生GSH的主要器官,后進入血漿或膽汁中。在多種疾病的發(fā)生過程中,均發(fā)現(xiàn)GSH水平下調(diào),表明減少內(nèi)源性抗氧化劑的消耗或增加促氧化劑的生成很重要。
除了GSH外,其他抗氧化劑如維生素A、維生素C、膽紅素、SOD和過氧化氫酶等有助于ROS的消除。在體外實驗中,長期酒精和高脂食物飼養(yǎng)的大鼠以及用乙醇處理過的CYP2E1高表達的HepG2細(xì)胞,均發(fā)現(xiàn)較多的氧化應(yīng)激和細(xì)胞毒性[25]。
2.3 炎性反應(yīng)誘發(fā)CYP2E1的毒性反應(yīng)
在炎性反應(yīng)中,氧化應(yīng)激反應(yīng)發(fā)生的原因是在巨噬細(xì)胞及中性粒細(xì)胞中,NO、O2-·和其他ROS的生成,并浸潤到炎癥組織中[26]。在不同組織中,炎癥細(xì)胞的活化反過來會誘導(dǎo)氧化酶的生成,如NADPH氧化酶復(fù)合體、iNOS、黃嘌吟氧化酶、過氧化物酶[27]。在這種情況下,ROS和活性氮自由基(RNS)相伴而生。隨后ROS和RNS通過氧化反應(yīng)和氮化反應(yīng)損傷DNA、RNA、脂質(zhì)體和蛋白質(zhì),最后引起細(xì)胞毒性[28]。另外,炎癥組織中細(xì)胞因子的釋放還會活化核轉(zhuǎn)錄因子NF-κB,進而激活環(huán)氧合酶2(COX2)、脂加氧酶(LOX)和iNOS等[29]。COX2、LOX和iNOS等的上調(diào)將產(chǎn)生更多的ROS和RNS[30]。
iNOS催化生成一氧化氮(NO),并與氧氣結(jié)合生成N2O3,其是一種強亞硝基化合物,可以使DNA發(fā)生脫氨基反應(yīng),并與仲胺反應(yīng)形成高度致癌的N-亞硝胺[31]。另外,NO也可與氧氣結(jié)合過氧亞硝基生成8-硝基鳥嘌吟,可以導(dǎo)致DNA的單鍵斷裂。
COX2在NFκB、細(xì)胞因子、腫瘤促進劑等因子的作用下可以催化多不飽和脂肪酸如花生四烯酸生成壬烯(HXN)和丙二醛(MDA),兩者統(tǒng)稱為脂質(zhì)過氧化物(LPO),LPO可使中性粒細(xì)胞發(fā)生趨化作用,進而產(chǎn)生炎癥[32]。LPO與ROS對線粒體的損傷作用相互疊加,進一步加重線粒體損傷[33]。另外,LPO還可與其他胞內(nèi)蛋白質(zhì)發(fā)生交聯(lián)作用而形成馬洛里小體,進而促進膠原纖維的合成,最后形成纖維化,甚至肝硬化[34]。
2.4 參與CYP2E1毒性作用的信號轉(zhuǎn)導(dǎo)通路
由于CYP2E1的表達和代謝部位主要在肝臟,故其對肝臟的毒性影響最大,研究發(fā)現(xiàn),CYP2E1參與許多肝臟疾病的發(fā)生過程如酒精性或非酒精性脂肪肝[35-36]、肝硬化[37-39]、慢性丙型肝炎[40-41]等。另外,CYP2E1也可以引起神經(jīng)毒性[42]、腎毒性[43]等。
研究發(fā)現(xiàn),在CYP2E1高表達的肝細(xì)胞系中,在內(nèi)、外源性物質(zhì)的誘導(dǎo)下,生成的ROS首先可以將絲裂原活化蛋白激酶(MAPK)磷酸化激活,包括細(xì)胞外調(diào)節(jié)蛋白激1/2(ERK1/2)、c-Jun N末端激酶和p38 MAPK[44]。當(dāng)用維生素K(一種可產(chǎn)生ROS的醌類物質(zhì))處理后,ERK1/2磷酸化程度顯著提高,而且維生素K可以阻止肝細(xì)胞凋亡。使用ERK1/2抑制劑可抑制維生素K對凋亡細(xì)胞的保護作用,這與表皮生長因子受體(EGFR)c-Raf信號轉(zhuǎn)導(dǎo)通路有關(guān)。相反,若用多不飽和脂肪酸(PUFA)如花生四烯酸處理后,則發(fā)現(xiàn)細(xì)胞壞死增多,且可以被抗氧化劑抑制。PUFA可以使CYP2E1高表達的肝細(xì)胞系中的ERK1/2的磷酸化程度顯著提高,最后引起細(xì)胞壞死[45]。研究表明,CYP2E1誘導(dǎo)的氧化應(yīng)激反應(yīng)通過EGFR c-Raf信號轉(zhuǎn)導(dǎo)通路作用于ERK1/2信號通路,可以阻止維生素K誘導(dǎo)的細(xì)胞凋亡以及促進PUFA誘導(dǎo)的細(xì)胞壞死。CYP2E1對MAPK信號轉(zhuǎn)導(dǎo)通路尤其是ERK1/2通路活性的改變可以使簡單的脂肪肝轉(zhuǎn)向急性肝損傷、肝細(xì)胞壞死、肝硬化等復(fù)雜疾病。
CYP2E1的肝毒性是通過ROS產(chǎn)生誘導(dǎo)的氧化應(yīng)激以及EGFR c-Raf信號轉(zhuǎn)導(dǎo)通路產(chǎn)生[46],圖1是CYP2E1產(chǎn)生ROS和細(xì)胞毒性的作用示意圖。圖中乙醇可以誘導(dǎo)CYP2E1的表達并產(chǎn)生ROS,脂肪酸尤其是PUFA可以產(chǎn)生脂質(zhì)過氧化反應(yīng)并產(chǎn)生ROS,最后引起細(xì)胞毒性。大量研究表明,CYP2E1介導(dǎo)的脂質(zhì)過氧化反應(yīng)在脂肪性肝病的發(fā)病機制中發(fā)揮著關(guān)鍵作用。脂肪酸同時可以由酮體代謝后繼續(xù)誘導(dǎo)CYP2E1的表達并產(chǎn)生更多的ROS。越來越多的ROS可以通過ERK1/2信號轉(zhuǎn)導(dǎo)通路最后導(dǎo)致細(xì)胞凋亡和細(xì)胞壞死,產(chǎn)生毒性。

圖1 CYP2E1產(chǎn)生ROS和細(xì)胞毒性的作用示意圖
在腎臟中,CYP2E1也是通過氧化應(yīng)激反應(yīng)產(chǎn)生腎臟毒性。用抗癌藥物順鉑處理的小鼠可以產(chǎn)生腎毒性,其血清中的肌酐、尿素含量升高,肌酐清除率降低,酶活性升高。而在CYP2E1敲除的小鼠中其腎毒性則降低,發(fā)現(xiàn)其順鉑處理過的腎切片上的H2O2含量很少,同時發(fā)現(xiàn)順鉑處理后的小鼠腎細(xì)胞死亡是由于細(xì)胞凋亡[47]。
在心臟中,CYP2E1表達于左右心房室、心內(nèi)膜、主動脈以及室間隔[48-49]。有實驗報道了大鼠心臟CYP2E1在胚胎期還未開始表達,出生后才開始表達,在出生后2周達到最高,隨后開始下降,這種現(xiàn)象相似于大鼠肝臟中CYP2E1的表達規(guī)律[50]。在病理生理狀態(tài)下,哺乳類動物的心臟可產(chǎn)生大量的ROS[51],如CYP450、XO、NADPH氧化酶復(fù)合體和兒茶酚胺的自氧化以及iNOS的解偶聯(lián)作用[52-54]。有研究報道,NADH/NADPH氧化酶復(fù)合體產(chǎn)生的ROS是參與心肌肥厚、冠狀動脈粥樣硬化性心臟病、心功能不全和心肌缺血性損傷等心臟疾病的重要機制之一[55-56]。同時,CYP2E1具有較強的NADPH氧化酶活性,產(chǎn)生大量的ROS以及誘導(dǎo)細(xì)胞膜發(fā)生脂質(zhì)過氧化作用[57]。
關(guān)于心肌病中ROS的產(chǎn)生機制,目前一般認(rèn)為是通過如下途徑而產(chǎn)生[58]:①某些致病因素(如病毒等)激活中性粒細(xì)胞,在NADH/NADPH氧化酶等的作用下生成ROS;②兒茶酚胺在單胺氧化酶的催化分解作用過程中,產(chǎn)生大量電子,電子與分子氧結(jié)合生成O2-·;③在心肌病中,心肌細(xì)胞膜結(jié)構(gòu)受損,胞內(nèi)Ca2+增多,造成線粒體氧化磷酸化發(fā)生解偶聯(lián)作用,從而阻止O2轉(zhuǎn)化為H2O,進而與電子結(jié)合生成O2-·;④在心力衰竭疾病中,去甲腎上腺素與血管緊張素的釋放增多,同時促進前列腺素的合成釋放,在此過程中產(chǎn)生ROS;⑤心肌缺血缺氧時,ATP分解為黃嘌吟、次黃嘌吟的能量不足,造成胞內(nèi)Ca2+增多,從而激活Ca2+依賴蛋白水解酶,使次黃嘌吟轉(zhuǎn)化為尿酸,在此過程中伴有ROS生成。
肥厚型心肌病是以心肌肥厚為主要特征,有研究表明,ROS信號轉(zhuǎn)導(dǎo)通路參與了肥厚型心肌病的致病過程[59-60]。ROS可以激活許多心肌肥厚的細(xì)胞外信號以及其下游信號轉(zhuǎn)導(dǎo)通路,其中包括PKC、MAPKs p38、JNK、ASK-1、ERK1/2、PI3K、Akt、NFκB和鈣調(diào)神經(jīng)磷酸酶等[61-62],誘發(fā)心肌細(xì)胞凋亡。
目前,有關(guān)CYP2E1的研究主要集中在肝臟代謝以及脂肪性肝病的致病作用。CYP2E1的肝毒性機制與ROS的生成、氧化應(yīng)激反應(yīng)、脂質(zhì)過氧化反應(yīng)、炎性反應(yīng)等有密切關(guān)系,而且CYP2E1誘導(dǎo)的氧化應(yīng)激反應(yīng)是通過EGFR c-Raf信號轉(zhuǎn)導(dǎo)通路作用于ERK1/2信號通路。同時,大量研究表明,ROS的生成、氧化應(yīng)激反應(yīng)、炎性反應(yīng)等與心臟疾病的發(fā)生密切相關(guān)。雖然關(guān)于CYP2E1在心臟中的作用以及與心肌病的關(guān)系研究仍不明確。
有研究報道[63],CYP2E1在肥厚型心肌病小鼠模型心臟中表達上調(diào),擴張型心肌病小鼠模型心臟中表達下調(diào);CYP2E1可以增加心臟中ROS和LPO的含量,減少GSH含量以及使總抗氧化能力下調(diào);CYP2E1可以使心臟中某些心肌肥厚分子標(biāo)志物的表達上調(diào)。據(jù)此可以推測CYP2E1介導(dǎo)的氧化應(yīng)激可能參與心臟的某些病理過程,CYP2E1很可能是調(diào)節(jié)心臟疾病的重要修飾基因,CYP2E1對心臟毒性作用的影響至關(guān)重要,可進一步應(yīng)用于心臟毒性的機制研究中。另外,在新藥安全性評價中,CYP2E1有可能作為一個心臟毒性評價新指標(biāo),CYP2E1基因修飾動物模型也可應(yīng)用于藥物的安全性評價。
[1]Cederbaum AI.Hepatoprotective effects of S-adenosyl-L-methionine against alcohol-and cytochrome P450 2E1-induced liver injury[J].World J Gastroenterol,2010,16(11):1366-1376.
[2]Gonzalez F.Role of cytochromes P450 in chemical toxicity and oxidative stress:studies with CYP2E1[J].Mutat Res,2005,569(1-2):101-110.
[3]Wu D,Cederbaum AI.Oxidative stress mediated toxicity exerted by ethanol-inducible CYP2E1[J].Toxicol Appl Pharmacol,2005,207(Suppl 2):70-76.
[4]Trafalis DT,Panteli ES,Grivas A,et al.CYP2E1 and risk of chemically mediated cancers[J].Expert Opin Drug Metab Toxicol,2010,6(3):307-319.
[5]Konishi M,Ishii H.Role of microsomal enzymes in development of alcoholic liver diseases[J].Gastroenterol Hepatol,2007,22(Suppl 1):S7-S10.
[6]Robin MA,Anandatheerthavarada HK,F(xiàn)ang JK,et al.Mitochondrial targeted cytochrome P4502E1(P450MT5)contains an intact N-terminus and requires mitochondrial specificelectron transfer proteins for activity[J].Biol Chem,2001,276(27):24680-24689.
[7]伍忠鑾,謝紅光,周宏灝.細(xì)胞色素P450 2E1的研究進展[J].中國臨床藥理學(xué)雜志,1997,13(1):57-62.
[8]Lieber CS.Microsomal ethanol-oxidizing system(MEOS):the first 30 years(1968-1998)—a review[J].Alcohol Clin Exp Res,1999,23(6):991-1007.
[9]Raucy JL,Lasker JM,Kraner JC,et al.Induction of cytochrorne P450ⅡE1 in the obese overfed rat[J].Mol Pharmacol,1991,39(3):275-280.
[10]Johansson I,Lindros KO,Eriksson H,et al.Transcriptional control of CYP2E1 in the perivenous liver region and during starvation[J].Biochem Biophys Res Commun,1990,173(1):331-338.
[11]Woodcroft KJ,Hafner MS,Novak RF.Insulin signaling in the transcriptional and posttranscriptional regulation of CYP2E1 expression[J].Hepatology,2002,35(2):263-273.
[12]Neafsey P,Ginsberg G,Hattis D,et al.Genetic polymorphism in CYP2E1:population distribution of CYP2E1 activity[J].Toxicol Environ Health B Crit Rev,2009,12(5-6):362-388.
[13]Mates JM,Perez-Gomez C,Nunez de Castro I.Antioxidant enzymes and human diseases[J].Clin Biochem,1999,32(8):595-603.
[14]Hensley K,F(xiàn)loyd RA.Reactive oxygen species and protein oxidation in aging:a look back,a look ahead[J]. Arch Biochem Biophys,2002,397(2):377-383.
[15]Abdelmegeed MA,Banerjee A,Yoo SH,et al.Critical role of cytochrome P450 2E1(CYP2E1)in the development of high fat-induced non-alcoholic steatohepatitis[J].J Hepatol,2012,57(4):860-866.
[16]Sakaki T,Inouye K.Practical application of mammalian cytochrome P450[J].J Biosci Bioeng,2000,90(6):583-590.
[17]Knockaert L,Descatoire V,Vadrot N,et al.Mitochondrial CYP2E1 is sufficient to mediate oxidative stress and cytotoxicity induced by ethanol and acetaminophen[J]. Toxicol In Vitro,2011,25(2):475-484.
[18]Koop DR.Alcohol metabolism's damaging effects on the cell:a focus on reactive oxygen generation by the enzyme cytochrome P450 2E1[J].Alcohol Res Health,2006,29(4):274-280.
[19]Lu Y,Cederbaum AI.CYP2E1 and oxidative liver injury by alcohol[J].Free Radic Biol Med,2008,44(5):723-738.
[20]Mari M,Cederbaum AI.CYP2E1 overexpression in HepG2 cells induces glutathione synthesis by transcriptional activation of gamma-glutamylcysteine synthetase[J].J Biol Chem,2000,275(20):15563-15571.
[21]Caro AA,Cederbaum AI.Oxidative stress,toxicology,and pharmacology of CYP2E1[J].Annu Rev Pharmacol Toxicol,2004,44:27-42.
[22]Cederbaum AI.Iron and CYP2E1-dependent oxidativestress and toxicity[J].Alcohol,2003,30(2):115-120.
[23]Kathirvel E,Chen P,Morgan K,et al.Oxidative stress and regulationofanti-oxidantenzymesincytochrome P4502E1 transgenic mouse model of non-alcoholic fatty liver[J].Gastroenterol Hepatol,2010,25(6):1136-1143.
[24]Iimuro Y,Bradford BU,Yamashina S,et al.The glutathione precursor L-2-oxothiazolidine-4-carboxylic acid protects against liver injury due to chronic enteral ethanol exposure in the rat[J].Hepatology,2000,31(2):391-398.
[25]Aubert J,Begriche K,Knockaert L,et al.Increased expression of cytochrome P450 2E1 in nonalcoholic fatty liver disease:mechanisms and pathophysiological role[J]. Clin Res Hepatol Gastroenterol,2011,35(10):630-637.
[26]Lonkar P,Dedon PC.Reactive species and DNA damage in chronic inflammation:reconciling chemical mechanisms and biological fates[J].Int J Cancer,2011,128(9):1999-2009.
[27]Bartsch H,Nair J.Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer:role of lipid peroxidation,DNA damage,and repair[J].Langenbecks Arch Surg,2006,391(5):499-510.
[28]Karin M,Greten FR.NF-kappaB:linking inflammation and immunity to cancer development and progression[J]. Nat Rev Immunol,2005,5(10):749-759.
[29]Hussain SP,Hofseth LJ,Harris CC.Radical causes of cancer[J].Nat Rev Cancer,2003,3(4):276-285.
[30]Zha S,Yegnasubramanian V,Nelson WG,et al.Cyclooxygenases in cancer:progress and perspective[J].Cancer Lett,2004,215(1):1-20.
[31]Ohshima H,Bartsch H.Chronic infections and inflammatory processes as cancer risk factors:possible role of nitric oxide in carcinogenesis[J].Mutat Res,1994,305(2):253-264.
[32]Williams MV,Lee SH,Pollack M,et al.Endogenous lipid hydroperoxide-mediated DNA-adduct formation in min mice[J].J Biol Chem,2006,281(15):10127-10133.
[33]Peixoto F,Vicente J,Madeim VM.A comparative study of plant and animal mitochondria exposcd to paraquat reveals that hydrogen peroxide is not related to the observed toxicity[J].Toxicol In Vitro,2004,18(6):733-739.
[34]Ronis MJ,Butura A,Sampey BP,et al.Effects of N-acetylcystein on ethanol-induced heatotoxicty in rats fed via total enteral nultrition[J].Free Rad Biol Med,2005,39(5):619-630.
[35]Abdelmegeed MA,Yoo SH,Henderson LE,et al.PPAR-alpha expression protects male mice from high fat-induced nonalcoholic fatty liver[J].J Nutr,2011,141(4):603-610.
[36]Kathirvel E,Chen P,Morgan K,et al.Oxidative stress and regulation of anti-oxidant enzymes in cytochrome P450 2E1 transgenic mouse model of non-alcoholic fatty liver[J].Gastroenterol Hepatol,2010,25(6):1136-1143.
[37]Khan AJ,Ruwali M,Choudhuri G,et al.Polymorphism in cytochrome P450 2E1 and interaction with other genetic risk factors and susceptibility to alcoholic liver cirrhosis[J]. Mutat Res,2009,664(1-2):55-63.
[38]Khan AJ,Husain Q,Choudhuri G,et al.Association of polymorphism in alcohol dehydrogenase and interaction with other genetic risk factors with alcoholic liver cirrhosis[J].Drug Alcohol Depend,2010,109(1-3):190-197.
[39]Khan AJ,Sharma A,Choudhuri G,et al.Induction of blood lymphocyte cytochrome P450 2E1 in early stage alcoholic liver cirrhosis[J].Alcohol,2011,45(1):81-87.
[40]Sutti S,Vidali M,Mombello C,et al.Breaking self-tolerance toward cytochrome P450 2E1(CYP2E1)in chronic hepatitis C:possible role for molecular mimicry[J].J Hepatol,2010,53(3):431-438.
[41]Sutti S,Vidali M,Mombello C,et al.Conformational anti-cytochrome P450 2E1(CYP2E1)auto-antibodies contribute to necro-inflammatory injury in chronic hepatitis[J]. Viral Hepat,2010,17(10):685-690.
[42]Viaggi C,Vaglini F,Pardini C,et al.MPTP-induced model of Parkinson's disease in cytochrome P450 2E1 knockout mice[J].Neuropharmacology,2009,56(8):1075-1081.
[43]Lash LH,Putt DA,Huang P,et al.Modulation of hepatic and renal metabolism and toxicity of trichloroethylene and perchloroethylene by alterations in status of cytochrome P450 and glutathione[J].Toxicology,2007,235(1-2):11-26.
[44]Wang Y,Ausman LM,Russell RM,et al.Increased apoptosis in high-fat diet-induced nonalcoholic steatohepatitis in rats is associated with c-Jun NH2-terminal kinase activation and elevated proapoptotic Bax[J].J Nutr,2008,138(10):1866-1871.
[45]Torres M,F(xiàn)orman HJ.Redox signaling and the MAP kinase pathways[J].Biofactors,2003,17(1-4):287-296.
[46]Gonzalez FJ.Role of cytochromes P450 in chemical toxicity and oxidative stress:studies with CYP2E1[J].Mutat Res,2005,569(1-2):101-110.
[47]Liu H,Baliqa M,Baliqa R.Effect of cytochrome P450 2E1 inhibitors on cisplatin-induced cytotoxicity to renal proximal tubular epithelial cells[J].Anticancer Res,2002,22(2A):863-868.
[48]Thum T,Borlak J.Gene expression in distinct regions of the heart[J].Lancet,2000,355(9208):979-983.
[49]Thum T,Borlak J.Testosterone,cytochrome P450,and cardiac hypertrophy[J].FASEB J,2002,16(12):l537-1549.
[50]Song BJ,Gelboin HV,Park SS,et al.Complementary DNA and protein sequences of ethanol-inducible rat and human cytochrome P450s.transcriptional and post-transcriptional regulation of the rat enzyme[J].J Biol Chem,1986,261(35):16689-16697.
[51]Frank JG.Oxygen,oxidative stress,hypoxia,and heart failure[J].J Clin Invest,2005,115(3):500-508.
[52]Seslliah PN,Weber DS,Rocic P,et al.AngiotensinⅡsimulation of NAD(P)H oxidase activity:upstream mediators[J].Circ Res,2002,91(5):406-413.
[53]Griendling KK,Sorescu D,Ushio-Fukai M.NADPH oxidase:role in cardiovascular biology and disease[J].Circ Res,2000,86(5):494-501.
[54]Tsutsui H,Kinugawa S,Matsushima S.Oxidative stress and heart failure[J].Am J Physiol Heart Circ Physiol,2011,301(6):H2181-H2190.
[55]Kuroda J,Sadoshima J.NADPH oxidase and cardiac failure[J].J Cardiovasc Transl Res,2010,3(4):314-320.
[56]Sorescu D,Griendling KK.Reactive oxygen specie,mitochon and NADPH oxidative in the development and progression of heart failure[J].Congest Heart Fail,2002,8(3):132-140.
[57]Rashba-Step J,Turro NJ,Cederbaum AI.NADPH-and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment[J]. Arch Biochem Biophys,1993,300(1):401-408.
[58]Kaplan P,Babusikova E,Lehotsky J,et al.Free radicalinduced protein modification and inhibition of Ca2+-ATPase of cardiac sarcoplasmicreticulum[J].Mol Cell Biochem,2003,248(1-2):41-47.
[59]Kwon SH,Pinentel DR,Remondino A,et al.H2O2regulation cardiac myocyte phenotype via concentration dependent activation of distinct kinasepathways[J].J Mol Cell Cardiol,2003,35(6):615-621.
[60]Higuchi Y,Otsu K,Nishida K,et al.Involvement of reactive oxygen species mediated NF-Kappa B activation in TNF-alpha-induced cardiomyocyte hypertrophy[J].J Mol Cell Cardio,2002,34(2):233-240.
[61]Sabri A,Hughie HH,Lucchesi PA.Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocyte[J].Antioxid Redox Signal,2003,5(6):731-740.
[62]Ghosh MC,Wang X,Li S,et al.Regulation of calcineurin by oxidative stress[J].MethodsEnzymol,2003,366:289-304.
[63]Zhang W,Lu D,Dong W,et al.Expression of CYP2E1 increases oxidative stress and induces apoptosis of cardiomyocytes in transgenic mice[J].FEBS J,2011,278(9):1484-1492.
Research progress on toxicity mechanism of cytochrome P450 2E1
PEI YanyuGAO Hong
Institute of Laboratory Animal Science,Chinese Academy of Medical Science Comparative Medical Center,Peking U-nion Medical College,Beijing100021,China
Cytochrome P450 2E1(CYP2E1)in many endogenous or exogenous substances play an important role in the process of metabolism.CYP2E1 mainly expresses in liver,at the same time,in extra hepatic tissues such as heart,kidney and other place also has a high expression.CYP2E1 participates into the generate of reactive oxygen species,causes oxidant stress,lipid peroxidation,inflammatory response and apoptosis and so on,then produce toxicity to the body, and is related to fatty liver,diabetes,cancer,and so on.This article summarizes the toxicity mechanism of CYP2E1 research progress and the prospect of in the evaluation of cardiac toxicity,and may be as a potential new cardiac toxicity assessment indicators used in the safety evaluation of new drugs.
Cytochrome P450 2E1;Oxidant stress;Toxicity;Cardiac Toxicity
R917
A
1673-7210(2015)07(a)-0039-06
2015-03-10本文編輯:李亞聰)