王志剛,胡影,崔競(jìng)文
齊齊哈爾大學(xué)生命科學(xué)與農(nóng)林學(xué)院,齊齊哈爾161006
?
鄰苯二甲酸二甲酯對(duì)典型細(xì)菌生長(zhǎng)和氧化應(yīng)激酶系的影響
王志剛*,胡影,崔競(jìng)文
齊齊哈爾大學(xué)生命科學(xué)與農(nóng)林學(xué)院,齊齊哈爾161006
鄰苯二甲酸二甲酯(DMP)是一種在環(huán)境中廣泛存在的有毒有機(jī)化合物,已被中國(guó)列為優(yōu)先控制污染物之一。為研究鄰苯二甲酸二甲酯(DMP)對(duì)典型細(xì)菌的影響,將Bacillus subtilis B19(G+)和Escherichia coli K12(G-)暴露于含不同濃度DMP(0,5,10,20,40和80 mg·L-1)的培養(yǎng)基中,監(jiān)測(cè)它們的生長(zhǎng)狀態(tài)以及氧化應(yīng)激酶系的變化。結(jié)果表明:DMP能抑制細(xì)菌生長(zhǎng),且其抑制作用隨DMP的濃度增大而增強(qiáng)。在相同的實(shí)驗(yàn)條件下,DMP對(duì)Escherichia coli K12的抑制作用比Bacillus subtilis B19更為顯著,且會(huì)使菌體的長(zhǎng)度增加。隨著DMP濃度的逐漸增高,菌體內(nèi)的SOD、CAT和GST的活性也隨之上升。這一現(xiàn)象表明菌體內(nèi)的ROS濃度有所升高。通過(guò)觀察DMP的作用濃度及對(duì)時(shí)間的效應(yīng)過(guò)程,發(fā)現(xiàn)菌體內(nèi)的酶活性呈現(xiàn)低濃度促進(jìn),高濃度抑制的趨勢(shì),并伴隨出現(xiàn)氧化應(yīng)激反應(yīng),該研究結(jié)果為進(jìn)一步研究DMP對(duì)微生物的影響提供了重要基礎(chǔ)。
鄰苯二甲酸二甲酯(DMP);細(xì)菌;氧化應(yīng)激酶系;活性氧自由基(ROS)
酞酸酯(PAEs)類污染物被喻為“第二個(gè)全球性PCB污染物”。鄰苯二甲酸二甲酯(DMP)是PAEs中結(jié)構(gòu)最簡(jiǎn)單也是應(yīng)用最廣泛的一種,可作為增塑劑來(lái)提高塑料的強(qiáng)度與可塑性[1],同時(shí)也廣泛應(yīng)用于農(nóng)藥、驅(qū)蟲劑、涂料以及化妝品等多種商品的生產(chǎn)[2]。因DMP與塑料基質(zhì)以非共價(jià)鍵形式相連,且化學(xué)性質(zhì)相對(duì)穩(wěn)定[3],故較易遷移至生態(tài)環(huán)境中并長(zhǎng)期存在[4]。目前,DMP已經(jīng)成為土壤、大氣和水體,甚至人體中檢出率最高的有機(jī)污染之一[5],最新研究結(jié)果顯示,我國(guó)黑土中檢測(cè)出的DMP含量已遠(yuǎn)超美國(guó)環(huán)保署(USEPA)設(shè)定的安全標(biāo)準(zhǔn)[6],成為全球普遍存在的污染物之一[7],因DMP具有致突變性、致畸性、致癌性以及生殖毒性等生物學(xué)性質(zhì)[8],USEPA和中國(guó)環(huán)保部均將其列入優(yōu)先控制污染物名單[9]。
活性氧自由基(reactive oxygen species, ROS)是細(xì)胞代謝過(guò)程中的副產(chǎn)物,主要包含羥基自由基(OH·)、超氧陰離子(O2-)、過(guò)氧化氫(H2O2)等物質(zhì),具有較強(qiáng)的氧化能力,在細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中起著至關(guān)重要的作用[10]。ROS可反映體內(nèi)的氧化應(yīng)激水平,但直接測(cè)定較為困難,生物體內(nèi)的抗氧化應(yīng)激酶對(duì)氧化脅迫極為敏感,其活性可以間接反映機(jī)體細(xì)胞中ROS的濃度變化,因此抗氧化應(yīng)激酶常用作指示生物環(huán)境變化的指標(biāo)[11]。抗氧化應(yīng)激酶主要包含超氧化物歧化酶(SOD)、過(guò)氧化氫酶(CAT)和谷胱甘肽硫轉(zhuǎn)移酶(GST)3種誘導(dǎo)酶,其活性可通過(guò)代償機(jī)制被輕微的氧化應(yīng)激所誘導(dǎo),而過(guò)強(qiáng)的氧化應(yīng)激則會(huì)抑制酶活性[12],但DMP如何影響這些酶的活性及其作用機(jī)制值得探討。
目前,國(guó)內(nèi)外對(duì)DMP的研究多集中在環(huán)境介質(zhì)中的含量和分布、降解機(jī)理以及動(dòng)植物毒性等方面[13-15],卻較少涉及對(duì)微生物的影響。微生物是生態(tài)系統(tǒng)的重要組成部分,對(duì)環(huán)境變化也十分敏感,并且細(xì)菌具備抗氧化系統(tǒng)[16],也有能力在多種酶參與的反應(yīng)體系中感受到脅迫信號(hào)[17]。因此,本文以Bacillus subtilis B19 (G+) 和Escherichia coli K12 (G-) 為實(shí)驗(yàn)材料,研究DMP污染對(duì)其生長(zhǎng)和氧化應(yīng)激酶系的影響,為闡明DMP對(duì)環(huán)境微生物的生態(tài)毒理學(xué)效應(yīng)提供參考。
1.1 試劑及儀器
試劑:DMP(純度≥97%)購(gòu)于天津市光復(fù)精細(xì)化工研究所,其余試劑均為國(guó)產(chǎn)分析純或超級(jí)純。
儀器:T6新世紀(jì)紫外可見(jiàn)分光光度計(jì)(北京普析通用儀器有限責(zé)任公司);JY92-2D超聲細(xì)胞破碎儀(寧波新芝生物科技股份有限公司);GTR16-2高速臺(tái)式冷凍離心機(jī)(北京時(shí)代北利離心機(jī)有限公司);S-4300掃描電子顯微鏡(日本HITACHI公司)。
1.2 菌株及生長(zhǎng)條件
Bacillus subtilis B19 (G+) 和Escherichia coli K12 (G-) 均為本實(shí)驗(yàn)室從黑土耕層中分離獲得并保存,接種于LB培養(yǎng)基(pH 7.0)中,30℃,130 r·min-1條件下振蕩培養(yǎng)。
1.3 實(shí)驗(yàn)設(shè)計(jì)
1.3.1 生長(zhǎng)曲線測(cè)定
選取對(duì)數(shù)生長(zhǎng)期的菌株按2%的接種量接種到添加0,5,10,20,40和80 mg·L-1終濃度DMP的LB培養(yǎng)基(pH 7.0)中,30℃振蕩培養(yǎng),并于600 nm下每4 h測(cè)定細(xì)菌吸光值OD600,以0 mg·L-1DMP為對(duì)照,每個(gè)處理設(shè)3組平行。
1.3.2 掃描電子顯微鏡制片方法
在10 mg·L-1DMP的LB培養(yǎng)基中振蕩培養(yǎng)24 h后,采用1 000 r·min-1低速離心,將沉淀轉(zhuǎn)入2.5%~4%的戊二醛中,4℃固定2.5 h,再次離心,用丙酮逐級(jí)脫水(30%,50%,70%,80%,90%,100%2次)后用叔丁醇置換,真空冷凍干燥后將細(xì)胞粉涂抹在導(dǎo)電膠上,進(jìn)行噴金處理,放入掃描電鏡樣品室進(jìn)行觀察拍照。
1.3.3 粗酶制備
細(xì)菌培養(yǎng)液參照1.3.1 生長(zhǎng)曲線培養(yǎng)方法,分別于0 h、6 h、24 h取培養(yǎng)液1.8 mL,經(jīng)6 000 r·min-1,4℃離心15 min后,收集菌體,用預(yù)冷的0.9%生理鹽水洗滌,重懸于0.8 mL 0.9%預(yù)冷鹽水中,加1 mL溶菌酶,常溫反應(yīng)5 min,冰浴下超聲破碎,工作時(shí)間5 s,間歇5 s,破碎10 min。破碎后的細(xì)胞6000 r·min-1,4℃離心15 min后,將上清液轉(zhuǎn)入潔凈的離心管中-20℃儲(chǔ)存?zhèn)溆谩?/p>
1.3.4 酶活測(cè)定
采用南京建成生物工程研究所提供的試劑盒測(cè)定抗氧化酶活性。
SOD活性單位定義:每毫克組織蛋白在1 mL反應(yīng)液中SOD抑制率達(dá)50%時(shí)所對(duì)應(yīng)的 SOD量為一個(gè)SOD活力單位(U) (U·mg protein-1)。
CAT活性單位定義:每毫克組織蛋白中過(guò)氧化氫酶每秒分解吸光度為0.50~0.55的底物中的過(guò)氧化氫相對(duì)量為一個(gè)過(guò)氧化氫酶的活力單位(U·mg protein-1)。
GST活性單位定義:每毫克組織蛋白,在37℃反應(yīng)l min扣除非酶促反應(yīng),使反應(yīng)體系中GSH濃度降低1 μmol·L-1為一個(gè)酶活力單位(U) (U·mg protein-1)。
蛋白含量定義:每升上清液中蛋白克數(shù)(g·L-1)。
以DMP處理0 h為對(duì)照,每個(gè)處理設(shè)3組平行。
1.4 數(shù)據(jù)統(tǒng)計(jì)
所有實(shí)驗(yàn)數(shù)據(jù)均采用3次平均值±標(biāo)準(zhǔn)差,并采用origin 8.5進(jìn)行圖表繪制。
2.1 細(xì)菌生長(zhǎng)曲線
從圖1可知,加入不同濃度DMP后,對(duì)細(xì)菌的總體生長(zhǎng)產(chǎn)生了抑制效果,起始4 h為B. subtilis B19的遲緩期,DMP抑制作用不明顯,而菌株進(jìn)入對(duì)數(shù)期后,與對(duì)照相比,菌株的生長(zhǎng)受到明顯抑制,且隨著DMP濃度的增加,抑制作用增強(qiáng),到達(dá)平穩(wěn)期后各濃度處理細(xì)菌生長(zhǎng)量大致相同(圖1a);DMP對(duì)E.coli K12的抑制作用在整個(gè)培養(yǎng)時(shí)間內(nèi)均較為顯著,且隨著DMP濃度的增加,抑制效應(yīng)逐漸增強(qiáng)。因此,DMP對(duì)細(xì)菌的生長(zhǎng)產(chǎn)生了抑制,降低了菌體的生長(zhǎng)速率,并且對(duì)E.coli K12的抑制效應(yīng)較B. subtilis B19顯著。
2.2 DMP污染對(duì)細(xì)菌形態(tài)的影響
DMP處理后,菌株B. subtilis B19和E. coli K12的形態(tài)均發(fā)生明顯變化(圖2),B. subtilis B19與對(duì)照相比菌體長(zhǎng)度變長(zhǎng),正常菌體的長(zhǎng)度為3.58±0.27 μm左右,而經(jīng)DMP培養(yǎng)后長(zhǎng)度約為4.61±0.28 μm,長(zhǎng)度增加22.36%;E. coli K12也同樣表現(xiàn)為長(zhǎng)度增加的趨勢(shì),長(zhǎng)度由1.47±0.09 μm伸長(zhǎng)至2.40±0.21 μm,長(zhǎng)度增幅38.7%。
2.3 細(xì)菌SOD活性比較
經(jīng)過(guò)不同濃度DMP處理后,菌株B. subtilis B19和E .coli K12的SOD活性發(fā)生了明顯變化(圖3)。由圖3a可知,DMP處理后,B. subtilis B19在6 h和24 h時(shí)SOD活性均顯著高于對(duì)照,在DMP濃度在5~20 mg·L-1范圍內(nèi),隨著污染濃度升高,SOD酶活性增加;在培養(yǎng)6 h時(shí),SOD活性在20 mg·L-1DMP處理中最大(0.681 U·mg prot-1);培養(yǎng)24 h時(shí),20 mg·L-1DMP處理的SOD活性則呈抑制狀態(tài),40 mg·L-1DMP處理的SOD活性最大(0.653 U·mg prot-1)。菌株E. coli K12與B. subtilis B19的SOD活性變化不盡相同,在培養(yǎng)6 h時(shí),在DMP濃度在5~20 mg·L-1范圍內(nèi),隨著污染濃度升高,SOD酶活性增加,DMP濃度大于20 mg·L-1后,SOD活性與DMP處理濃度負(fù)相關(guān);E. coli K12在24 h時(shí),隨著污染濃度的增加活性顯著降低。
2.4 細(xì)菌CAT活性比較
經(jīng)不同濃度DMP處理后,培養(yǎng)6 h時(shí)B. subtilis B19和E. coli K12的CAT活性均顯著高于對(duì)照。由圖4a可知,10 mg·L-1DMP處理B. subtilis B19的CAT活性最大(0.314 U·mg prot-1),之后CAT活性隨污染濃度增加而顯著降低,DMP污染24 h時(shí),B. subtilis B19的CAT活性在低濃度小幅度增加,而DMP處理濃度大于20 mg·L-1后,CAT活性與處理濃度呈負(fù)相關(guān)。培養(yǎng)6 h時(shí)E. coli K12的CAT活性,隨著污染濃度升高而增加(圖4b),并在40 mg·L-1DMP處理濃度CAT活性最大(0.61 U·mg prot-1),而經(jīng)DMP培養(yǎng)24 h時(shí),E. coli K12的CAT活性與DMP處理濃度均呈現(xiàn)負(fù)相關(guān)。

圖1 B. subtilis B19 (a)和E. coli K12 (b)的生長(zhǎng)曲線Fig. 1 Growth curve of B. subtilis B19 (a) and E. coli K12 (b)

圖2 B. subtilis B19和E. coli K12掃描電鏡下形態(tài)變化(×10 000)(a: B. subtilis B19對(duì)照;b:處理后B. subtilis B19;c: E.coli K12對(duì)照;d: 處理后E.coli K12)Fig. 2 Scanning Electron microscope of B. subtilis B19 and E. coli K12 (×10000) (a: the CK of B. subtilis B19;b:B. subtilis B19 after treating ; c: the CK of E.coli K12; d: E.coli K12 after treating)

圖3 B. subtilis B19 (a)和E. coli K12 (b) SOD活性的變化Fig. 3 SOD activities in B. subtilis B19 (a) and E. coli K12 (b)
2.5 細(xì)菌GST活性比較
DMP污染處理后,B. subtilis B19和E. coli K12的GST活性均呈現(xiàn)先增加后降低的趨勢(shì),且活性均高于對(duì)照組。培養(yǎng)6 h時(shí),B. subtilis B19在DMP處理5~40 mg·L-1范圍內(nèi)GST活性持續(xù)增加,并在40 mg·L-1DMP處理GST活性最大(0.55 U·mg prot-1)。E. coli K12與B. subtilis B19的酶活變化大致相同,但培養(yǎng)6 h時(shí)在10 mg·L-1DMP處理GST活性最大(1.142 U·mg prot-1),之后隨DMP濃度升高活性降低。培養(yǎng)24 h時(shí),E. coli K12與B. subtilis B19在DMP濃度5~20 mg·L-1范圍內(nèi)GST活性均隨濃度升高而增加,但與B. subtilis B19相比,E. coli K12的GST活性幅度較大。

圖4 B. subtilis B19(a)和E. coli K12(b)CAT活性的變化Fig. 4 CAT activities in B. subtilis B19 (a) and E. coli K12 (b)

圖5 B. subtilis B19(a)和E. coli K12(b)GST活性的變化Fig. 5 GST activities in B. subtilis B19 (a) and E. coli K12 (b)
微生物在生態(tài)系統(tǒng)中具有重要的作用,而其生物特性也與生態(tài)系統(tǒng)的功能密切相關(guān)[18]。最新研究表明,DMP污染可影響微生物群落多樣性與代謝功能[19],但有關(guān)DMP對(duì)單一細(xì)菌的生態(tài)毒理效應(yīng)尚不明確。因此,本實(shí)驗(yàn)通過(guò)監(jiān)測(cè)DMP污染對(duì)B. subtilis B19和E. coli K12的生長(zhǎng)以及抗氧化應(yīng)激酶的變化,從而闡釋DMP對(duì)微生物的毒理效應(yīng)。結(jié)果顯示,DMP污染可抑制細(xì)菌生長(zhǎng),且抑制作用隨著污染濃度的升高而增加,而B. subtilis B19與 E. coli K12的生長(zhǎng)趨勢(shì)不同,可能與菌體自身特性有關(guān),B. subtilis B19為G+,細(xì)胞壁通透性相對(duì)較差,而E. coli K12為G-,細(xì)胞壁較薄,對(duì)刺激可能更為敏感,故DMP對(duì)E. coli K12的抑制作用較為明顯。同時(shí)掃描電鏡也顯示細(xì)菌形態(tài)發(fā)生改變,菌體明顯變長(zhǎng)。有研究表明,PAEs類有機(jī)物會(huì)在微生物細(xì)胞質(zhì)膜上積累,降低質(zhì)膜的流動(dòng)性[20],加之DMP水溶性較高,更易滲透入細(xì)胞,因此,DMP污染可能引起質(zhì)膜損傷而抑制細(xì)菌生長(zhǎng),同時(shí)也導(dǎo)致了細(xì)菌的形體發(fā)生變化。
正常情況下,生物體內(nèi)產(chǎn)生的活性氧與抗氧化應(yīng)激酶之間始終保持動(dòng)態(tài)平衡,但經(jīng)污染脅迫后,生物體為應(yīng)對(duì)額外產(chǎn)生的活性氧所帶來(lái)的氧化脅迫,便會(huì)產(chǎn)生氧化應(yīng)激(oxidative stress),而抗氧化應(yīng)激酶的活性也會(huì)因?yàn)榇鷥敊C(jī)制而發(fā)生改變[12]。PAEs可誘發(fā)生物體產(chǎn)生ROS而引起的氧化脅迫[12,21],閔安娜等研究BBP對(duì)神經(jīng)細(xì)胞的氧化損傷結(jié)果也證實(shí)了這一觀點(diǎn)[22]。SOD可以催化O2-迅速分解為O2和H2O2[23],CAT則進(jìn)一步將H2O2分解,減少過(guò)氧化物酶中長(zhǎng)鏈脂肪酸代謝物H2O2的積累[24],本研究發(fā)現(xiàn),B. subtilis B19和E. coli K12的SOD活性在低濃度和污染早期緩慢增加,隨著DMP濃度升高和污染時(shí)間的延長(zhǎng),酶活性逐漸降低,這一結(jié)果與王艷等研究PAEs對(duì)蚯蚓的毒性作用結(jié)果一致[15]。而B. subtilis B19的CAT活性在低濃度時(shí)較高,說(shuō)明菌體對(duì)產(chǎn)生的H2O2做出應(yīng)答。通常SOD和CAT之間是利用相互協(xié)作的方式共同來(lái)維持活性氧的代謝平衡,SOD酶活性較低時(shí)H2O2積累較少,所以CAT可以表現(xiàn)出相應(yīng)的酶活;反之,SOD活性上升可提高機(jī)體清除ROS的能力,使H2O2積累而抑制CAT活性。因此,H2O2可能有一部分是由SOD催化產(chǎn)生的,并且隨著DMP污染時(shí)間的延長(zhǎng),H2O2可過(guò)量積累,導(dǎo)致B. subtilis B19和E. coli K12的CAT活性均受到抑制,致使酶活性降低,這一結(jié)果與蔡文貴等鄰苯二甲酸二乙基己酯對(duì)翡翠貽貝(Perna viridis )的CAT酶活變化不一致[25],可能與污染物種類不同有關(guān)。
GST發(fā)生在解毒系統(tǒng)第二階段,可催化谷胱甘肽(GSH)與親電性中間代謝物結(jié)合,并減少化合物與細(xì)胞內(nèi)的生物大分子如DNA的結(jié)合,因此GST在解毒系統(tǒng)與減輕氧化脅迫方面起重要作用[26]。本實(shí)驗(yàn)中,B. subtilis B19和E. coli K12的GST活性在低濃度增加而高濃度降低,GST活性的增加是因?yàn)镚ST催化細(xì)菌消耗GSH,此步驟是解毒的主要途徑,而GST活性的降低,可能是由于作為底物的GSH被大量消耗,產(chǎn)生的中間代謝產(chǎn)物改變了GST的亞基的組成,降低了GST的活性,或測(cè)定時(shí)與GST底物發(fā)生競(jìng)爭(zhēng)性抑制[27],因此導(dǎo)致GST活性的降低。
綜上所述,經(jīng)DMP污染處理后,細(xì)菌的抗氧化應(yīng)激酶(SOD、CAT和GST)活性總體表現(xiàn)為低濃度激活而高濃度抑制的趨勢(shì),說(shuō)明DMP污染可對(duì)細(xì)菌產(chǎn)生氧化損傷,并且E. coli K12的酶活性變化與B. subtilis B19相比較為明顯,可能是因?yàn)镋. coli K12的細(xì)胞壁較薄,DMP易于進(jìn)入其細(xì)胞而產(chǎn)生氧化應(yīng)激,導(dǎo)致其酶活性波動(dòng)幅度較大。
致謝:Kui Chen教授在論文寫作過(guò)程中提供了寶貴意見(jiàn),謹(jǐn)致謝忱!
[1] Boonnorat J, Chiemchaisri C, Chiemchaisri W, et al. Removals of phenolic compounds and phthalic acid esters in landfill leachate by microbial sludge of two-stage membrane bioreactor [J]. Journal of Hazardous Materials, 2014, 277: 93-101
[2] Wang Z, Deng D, Yang L. Degradation of dimethyl phthalate in solutions and soil slurries by persulfate at ambient temperature [J]. Journal of Hazardous Materials, 2014, 271: 202-209
[3] Wu M H, Liu N, Xu G, et al. Kinetics and mechanisms studies on dimethyl phthalate degradation in aqueous solutions by pulse radiolysis and electron beam radiolysis [J]. Radiation Physics and Chemistry, 2011, 80(3): 420-425
[4] Souza F L, Aquino J M, Irikura K, et al. Electrochemical degradation of the dimethyl phthalate ester on a fluoride-doped Ti/β -PbO2anode [J]. Chemosphere, 2014, 109: 187-194
[5] Prasad B, Suresh S. Biodegradation of dimethyl phthalate ester using free cells, entrapped cells of Variovorax sp. BS1 and cell free enzyme extracts: A comparative study [J]. International Biodeterioration & Biodegradation, 2015, 97: 179-187
[6] Zhang Y, Wang P, Wang L, et al. The influence of facility agriculture production on phthalate esters distribution in black soils of northeast China [J]. Science of the Total Environment, 2015, 506-507: 118-125
[7] Zhang M, Cong Y, Sheng Y, et al. A direct competitive enzyme-linked immunosorbent assay by antibody coated for diethyl phthalate analysis [J]. Analytical Biochemistry, 2010, 406(1): 24-28
[8] Benson R. Hazard to the developing male reproductive system from cumulative exposure to phthalate esters-dibutyl phthalate, diisobutyl phthalate, butylbenzyl phthalate, diethylhexyl phthalate, dipentyl phthalate, and diisononyl phthalate [J]. Regulatory Toxicology and Pharmacology, 2009, 53(2): 90-101
[9] Jin D, Kong X, Cui B, et al. Biodegradation of di-n-butyl phthalate by a newly isolated halotolerant Sphingobium sp. [J]. International Journal of Molecular Sciences, 2013, 14(12): 24046-24054
[10] 周宗燦. 氧化還原信號(hào)和氧化應(yīng)激/還原應(yīng)激[J]. 毒理學(xué)雜志, 2015, 29(1): 1-14
Zhou Z C. Redox signal and oxidative stress/reduction of stress [J]. Journal of Toxicology, 2015, 29(1):1-14 (in Chinese)
[11] Zhou L, Beattie M C, Lin C Y, et al. Oxidative stress and phthalate-induced down-regulation of steroidogenesis in ma-10 leydig cells [J]. Reproductive Toxicology, 2013, 42:95-101
[12] Sun Y, Yu H, Zhang J, et al. Bioaccumulation, depuration and oxidative stress in fish Carassius auratus under phenanthrene exposure [J]. Chemosphere, 2006, 63(8): 1319-1327
[13] 陳永山, 駱永明, 章海波, 等. 設(shè)施菜地土壤酞酸酯污染的初步研究[J]. 土壤學(xué)報(bào), 2011, 48(3): 516-523
Chen Y S, Luo Y M, Zhang H B, et al. Preliminary study on PAEs pollution of greenhouse soils [J]. Acta Pedologica Sinica, 2011, 48(3): 516-523 (in Chinese)
[14] 趙玲, 劉敏, 尹平河, 等. 鄰苯二甲酸二甲酯的光催化降解機(jī)理[J]. 環(huán)境工程學(xué)報(bào), 2011, 5(6): 1273-1277
Zhao L, Liu M, Yin P H, et al. Mechanisms of photo catalytic degradation of dimethyl phthalate [J]. Chinese Journal of Environmental Engineering, 2011, 5(6): 1273-1277 (in Chinese)
[15] 王艷, 馬澤民, 吳石金. 3種PAEs對(duì)蚯蚓的毒性作用和組織酶活性影響的研究[J]. 環(huán)境科學(xué), 2014, 35(2): 770-779
Wang Y, Ma Z M, Wu S J. Study on the effect of enzymatic activity and acute toxicity of three PAEs on Eisenia foetida [J]. Environmental Science, 2014, 35(2): 770-779 (in Chinese)
[16] 汪保衛(wèi), 施慶珊, 歐陽(yáng)友生, 等. 細(xì)菌抗氧化系統(tǒng)-oxyR 調(diào)節(jié)子研究進(jìn)展[J]. 微生物學(xué)報(bào), 2008, 48(11): 1556-1561
Wang B W, Shi Q S, Ouyang Y S et al. Progress in oxyR regulon- the bacterial antioxidant defense system--A review [J]. Acta Microbiologica Sinica, 2008, 48(11): 1556-1561 (in Chinese)
[17] Niazi J H, Kim B C, Ahn J M, et al. A novel bioluminescent bacterial biosensor using the highly specific oxidative stress-inducible Pgi gene [J]. Biosensors and Bioelectronics, 2008, 24(4): 670-675
[18] Graham E B, Wieder W R, Leff J W, et al. Do we need to understand microbial communities to predict ecosystem function? A comparison of statistical models of nitrogen cycling processes [J]. Soil Biology and Biochemistry, 2014, 68:279-282
[19] Wang Z G, Hu Y L, Xu W H, et al. Impacts of dimethyl phthalate on the bacterial community and functions in black soils [J]. Frontiers in Microbiology, 2015, 6:405. doi: 10.3389/fmicb.2015.00405
[20] Cartwright C D, Thompson I P, Burns R G. Degradation and impact of phthalate plasticizers on soil microbial communities [J]. Environmental Toxicology and Chemistry, 2000, 19(5): 1253-1261
[21] 別聰聰, 李鋒民, 李媛媛, 等. 鄰苯二甲酸二丁酯對(duì)短裸甲藻活性氧自由基的影響[J]. 環(huán)境科學(xué), 2012, 33(2): 442-447
Bie C C, Li F M, Li Y Y. Effects of allelochemical dibutyl phthalate on Gymnodinium breve reactive oxygen species [J]. Environmental Science, 2012, 33(2): 442-447 (in Chinese)
[22] 閔安娜, 劉鋒明, 晏彪, 等. 鄰苯二甲酸丁基芐酯致神經(jīng)細(xì)胞氧化損傷 [J]. 生態(tài)毒理學(xué)報(bào), 2014, 9(1): 97-102
Min A N, Liu F M, Yan B, et al. Neurotoxicity and the oxidative damage induced by butyl benzyl phthalate [J]. Asian Journal of Ecotoxicology, 2014, 9(1): 97-102 (in Chinese)
[23] Gerlach D, Reichardt W, Vettermann S. Extracellular superoxide dismutase from Streptococcus pyogenes type 12 strain is manganese-dependent [J]. FEMS Microbiology Letters, 1998, 160(2): 217-224
[24] Winston G W, Di Giulio R T. Prooxidant and antioxidant mechanisms in aquatic organisms [J]. Aquatic Toxicology, 1991, 19(2): 137-161
[25] 蔡文貴, 秦潔芳, 賈曉平, 等. 鄰苯二甲酸二乙基己酯對(duì)翡翠貽貝(Perna viridis )生化指標(biāo)的影響 [J]. 生態(tài)學(xué)雜志, 2012, 31(1): 100-105
Cai W G, Qin J F, Jia X P, et al. Effects of di-(2-ethylhexyl) phthalate on the biochemical indices of green mussel (Perna viridis) [J]. Chinese Journal of Ecology, 2012, 31(1): 100-105 (in Chinese)
[26] Lee K W, Raisuddin S, Rhee J S, et al. Expression of glutathione S-transferase(GST) genes in the marine copepod Tigriopus japonicus exposed to trace metals [J]. Aquatic Toxicology, 2008, 89(3): 158-166
[27] Egaas E, Sandvik M, Fjeld E, et al. Some effects of the fungicide propiconazole on cytochrome P450 and glutathione S-transferase in brown trout (Salmo trutta) [J]. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 1999, 122(3): 337-344
◆
Impact of Dimethyl Phthalate on the Activities of Oxidative Stress Enzymes and Growth of Typical Bacteria
Wang Zhigang*, Hu Ying, Cui Jingwen
Qiqihar University, Institute of Life Science and Agriculture and Forestry, Qiqihar 161006, China
Received 24 February 2015 accepted 31 March 2015
Dimethyl phthalate (DMP), one of the phthalate esters, is ubiquitous environmental pollutant. It has been listed as an environmental priority pollutant by China State Environmental Protection Administration (SEPA). To study the impacts of dimethyl phthalate contamination on the activities of oxidative stress enzymes and growth of typical bacteria, Escherichia coli K12 (a gram-negative bacterium) and Bacillus subtilis B19 (a gram-positive bacterium) were exposed to the conditions with various DMP concentrations (0, 5, 10, 20, 40 and 80 mg·L-1, respectively),and observed the status of their growth as well as monitored the enzyme activities. The results showed that the growth of Escherichia coli K12 and Bacillus subtilis B19 were inhibited by DMP. Under the equal conditions, it was more effective in E. coli K12 than in Bacillus subtilis B19. The evidences from electron microscopy (SEM) showed that DMP pollution increased the length of thallus for the two strains. In the meantime, the activities of SOD, CAT and GST in the two strains were increased along with the increase of DMP concentration, which meant that the concentration of ROS raised up in the bacteria. Additionally, the phenomenon implies that the oxidative stress reaction was triggered by DMP contamination in bacteria. We propose that our results provided solid evidences for the further studies on the impact of dimethyl phthalate contamination on soil bacteria.
dimethyl phthalate (DMP); bacteria; oxidative stress enzyme; ROS
國(guó)家自然科學(xué)青年基金 (31200390) ;黑龍江省教育廳高校青年學(xué)術(shù)骨干支持計(jì)劃項(xiàng)目 (1245G068)
王志剛(1980-),男,副教授,研究方向?yàn)榄h(huán)境微生物毒理學(xué),E-mail: wzg1980830@sina.com
10.7524/AJE.1673-5897-20150224001
2015-02-24 錄用日期:2015-03-31
1673-5897(2015)3-297-07
X171.5
A
王志剛,胡影,崔競(jìng)文. 鄰苯二甲酸二甲酯對(duì)典型細(xì)菌生長(zhǎng)和氧化應(yīng)激酶系的影響[J]. 生態(tài)毒理學(xué)報(bào),2015, 10(3): 297-303
Wang Z G, Hu Y, Cui J W. Impact of dimethyl phthalate on the activities of oxidative stress enzymes and growth of typical bacteria [J]. Asian Journal of Ecotoxicology, 2015, 10(3): 297-303 (in Chinese)