趙輝, 趙斌, 盧曉東, 周軍
(西北工業(yè)大學(xué) 精確制導(dǎo)與控制研究所, 陜西 西安 710072)
激光駕束制導(dǎo)導(dǎo)彈抗側(cè)風(fēng)作用控制方法
趙輝, 趙斌, 盧曉東, 周軍
(西北工業(yè)大學(xué) 精確制導(dǎo)與控制研究所, 陜西 西安 710072)
針對(duì)激光駕束制導(dǎo)導(dǎo)彈抗側(cè)風(fēng)干擾問題,基于減載控制思想,提出了一種通過控制氣流側(cè)滑角的大小來實(shí)現(xiàn)姿態(tài)修正的方案。在不增加彈上設(shè)備的前提下,由慣組信息估計(jì)得到實(shí)時(shí)氣流側(cè)滑角,進(jìn)而將其反饋到控制回路,通過調(diào)節(jié)修正系數(shù)來抵抗側(cè)風(fēng)造成的導(dǎo)彈橫向過載。六自由度仿真結(jié)果表明,在24 m/s的側(cè)風(fēng)干擾下,不加側(cè)風(fēng)修正方案的導(dǎo)彈會(huì)脫離激光波束,而改進(jìn)方法的制導(dǎo)線偏差則快速收斂,脫靶量小于0.1 m,證明了該方法的有效性。
側(cè)風(fēng)干擾; 氣流側(cè)滑角; 側(cè)向偏差; 彈道修正
風(fēng)速是影響彈道散布的重要因素。激光駕束制導(dǎo)導(dǎo)彈以激光波束作為導(dǎo)引,較大的風(fēng)速將會(huì)使導(dǎo)彈的飛行方向發(fā)生變化,脫離有限寬度的波束,從而失去精確打擊能力[1]。因此,風(fēng)干擾對(duì)駕束制導(dǎo)導(dǎo)彈的影響不容忽視。
目前對(duì)飛行器抗風(fēng)干擾的研究較多,因控制對(duì)象的差異,控制方法也不盡相同。文獻(xiàn)[2]將側(cè)風(fēng)視為常值干擾,導(dǎo)彈控制系統(tǒng)通過觀測(cè)器反饋來補(bǔ)償風(fēng)的影響;但其設(shè)計(jì)過程繁瑣,線性觀測(cè)器也不能很好地估計(jì)干擾值。文獻(xiàn)[3]針對(duì)飛翼無人機(jī)著陸側(cè)風(fēng)干擾問題,提出了副翼和方向舵聯(lián)合控制以抵消附加側(cè)滑角的方案;但其控制方式基于實(shí)時(shí)側(cè)滑角信息,而一般戰(zhàn)術(shù)導(dǎo)彈的側(cè)滑角無法直接測(cè)量。文獻(xiàn)[4]運(yùn)用減載控制思想,在姿態(tài)控制方程中加入實(shí)時(shí)計(jì)算出的火箭相對(duì)氣流的迎角、側(cè)滑角,使火箭具有一種向合成氣流飛行的趨勢(shì),降低了氣動(dòng)載荷;但該方法依靠發(fā)動(dòng)機(jī)推力主動(dòng)減載,對(duì)氣動(dòng)舵控制的導(dǎo)彈并不適用。對(duì)于激光駕束制導(dǎo)導(dǎo)彈來說,在不增加彈上設(shè)備的前提下,控制系統(tǒng)如何對(duì)抗側(cè)風(fēng)干擾成為其設(shè)計(jì)過程中的關(guān)鍵。
針對(duì)以上內(nèi)容,本文首先在已有的側(cè)風(fēng)模型的基礎(chǔ)上,分析了側(cè)風(fēng)對(duì)彈道參數(shù)的影響。然后針對(duì)側(cè)風(fēng)對(duì)駕束制導(dǎo)導(dǎo)彈偏航通道影響較大的問題,提出了一種氣流側(cè)滑角反饋的彈體姿態(tài)修正方案,并依據(jù)典型風(fēng)場數(shù)據(jù),調(diào)節(jié)修正項(xiàng)系數(shù)以減弱導(dǎo)彈所受到的橫向過載。此外,針對(duì)實(shí)時(shí)氣流側(cè)滑角的獲取問題,提出了基于慣組信息的卡爾曼濾波方案。最后通過六自由度仿真驗(yàn)證了本方法對(duì)抗側(cè)風(fēng)干擾的有效性和優(yōu)越性。
1.1 側(cè)風(fēng)引起的氣流側(cè)滑角
導(dǎo)彈在側(cè)風(fēng)作用下的相對(duì)速度如圖1所示[5]。

圖1 側(cè)風(fēng)作用下的相對(duì)速度Fig.1 Relative speed under the action of crosswind
將風(fēng)速W由慣性系通過轉(zhuǎn)換矩陣L′(θ,ψ,γ)轉(zhuǎn)到彈體系,再由速度三角形得到空速VK在彈體坐標(biāo)系的分量為:
(1)
式中:[Vkx1,Vky1,Vkz1]T為空速Vk在彈體坐標(biāo)系下的分量;θ,ψ,γ分別為俯仰角、偏航角和滾轉(zhuǎn)角。
根據(jù)文獻(xiàn)[6]氣流側(cè)滑角定義可得:
sinβ*=Vkz1/Vk1
(2)
其中:
將式(1)中的空速分量[Vkx1,Vky1,Vkz1]T代入式(2),即可得到氣流側(cè)滑角β*。
1.2 對(duì)側(cè)風(fēng)干擾的修正措施
側(cè)風(fēng)作用在彈體側(cè)滑角平面,相當(dāng)于對(duì)彈體施加了均勻分布的力Fy。一般情況下力的作用點(diǎn)與彈體質(zhì)心并不重合,產(chǎn)生的氣動(dòng)力矩會(huì)使彈體偏斜,產(chǎn)生側(cè)滑。表1中列出了激光駕束制導(dǎo)導(dǎo)彈在不同風(fēng)速下的偏航角與標(biāo)準(zhǔn)彈道偏航角的差異值。

表1 不同風(fēng)速下偏航角偏離情況Table 1 Yaw angle deviations at different wind speeds
導(dǎo)彈側(cè)向受力為:
Fy=LsinγV+CcosγV
(3)
式中:L為升力;C為側(cè)向力;γV為速度滾轉(zhuǎn)角。在γV不大的情況下,上式近似表達(dá)為:
(4)

進(jìn)行彈道修正的目的是使導(dǎo)彈縱軸與空速矢量一致,使導(dǎo)彈具有一種向合成氣流方向飛行的趨勢(shì)。實(shí)際情況是盡可能使氣流側(cè)滑角減小,以減少作用在彈體上的氣動(dòng)載荷,從而達(dá)到卸載的目的[7]。
本文通過將實(shí)時(shí)計(jì)算的氣流側(cè)滑角β*引入到控制量u,成為附加控制項(xiàng),改進(jìn)后控制量形式為:
u=u0+kββ*
(5)
式中:u0為未加修正時(shí)的控制量;kβ為修正系數(shù),其大小表征修正能力。
考慮短周期運(yùn)動(dòng)方程[8]:
(6)
式中:Δψ為偏航角;Δδy為控制量;Mgy為干擾力矩。若不考慮側(cè)滑角反饋,控制量可表示為:
(7)

將式(12)代入式(11),得到:
b28Mgy+b24βw
(8)
(9)
要減小氣流側(cè)滑角,應(yīng)設(shè)法使Δβ去抵消βw。
(10)
將氣流側(cè)滑角反饋到控制項(xiàng)中,得到:
(11)
將式(11)代入式(6),并忽略動(dòng)態(tài)項(xiàng)后得:
(12)

(13)
工程實(shí)際中獲得實(shí)時(shí)側(cè)滑角的方法一般有兩種:一種是通過彈上傳感器直接獲得,如飛機(jī)上的迎角傳感器等;另一種是借助導(dǎo)彈動(dòng)力學(xué)模型,以慣組數(shù)據(jù)的姿態(tài)角和姿態(tài)角速度為量測(cè)值,利用卡爾曼濾波或其他非線性觀測(cè)器估計(jì)出側(cè)滑角。由于后者克服了對(duì)硬件的依賴性,并且只要?jiǎng)恿W(xué)建模的準(zhǔn)確度高,濾波精度也會(huì)越高,故本文采用第二種方法。
采用線性化后的動(dòng)力學(xué)模型,其狀態(tài)方程和觀測(cè)方程如下[9]:
(14)
z(t)=[0 0 1 1][αβωyωz]T+v(t)
(15)
式中;α為迎角;ωx為滾轉(zhuǎn)角速度,為耦合項(xiàng),由慣組信息給出;w(t)為系統(tǒng)噪聲矩陣;v(t)為觀測(cè)噪聲矩陣。選取狀態(tài)變量X=[αβωyωz]T,輸入量u=[δyδz]T,令
狀態(tài)方程可簡寫為:

(16)
觀測(cè)方程為:
z(t)=Hx(t)+v(t)
(17)
選取離散時(shí)間常數(shù)T=0.01 s,對(duì)狀態(tài)方程和觀測(cè)方程離散化,采用標(biāo)準(zhǔn)卡爾曼濾波過程進(jìn)行濾波,得到最優(yōu)的側(cè)滑角估計(jì)值[10]。
選取系統(tǒng)噪聲方差矩陣Q(k)時(shí)應(yīng)保證其為對(duì)稱的半正定矩陣,觀測(cè)噪聲矩陣R(k)為正定的對(duì)稱矩陣。濾波流程如圖2所示。

圖2 濾波流程圖Fig.2 Flow chart of filtering


圖3 估計(jì)值與真值對(duì)比Fig.3 Comparison of estimated values and true values

圖4 修正前后氣流側(cè)滑角對(duì)比Fig.4 Comparison of air flow sideslip angles before and after correction

圖5 修正前后側(cè)向偏差對(duì)比Fig.5 Comparison of lateral deviations before and after correction
由圖3~圖5可以看出,卡爾曼濾波值與真實(shí)值相差不超過0.3°,可以滿足一定的精度要求。采取修正措施后,氣流側(cè)滑角β*在幅值上減小,即作用在彈體上的橫向過載減小;側(cè)向偏差峰值Zlmax下降到3 m以內(nèi),保證了導(dǎo)彈在10級(jí)側(cè)風(fēng)的影響下不脫離激光波束。圖6為啟控3 s后引入風(fēng)干擾的側(cè)向偏差對(duì)比情況,圖7為對(duì)應(yīng)的彈道曲線。

圖6 引入側(cè)風(fēng)后側(cè)向偏差對(duì)比Fig.6 Comparison of lateral deviations with crosswind

圖7 彈道曲線Fig.7 Trajectory curve
由圖6和圖7可以看出,未修正控制方法的側(cè)向偏差超調(diào)量大,幅值也超出了激光半徑;而修正后的曲線平滑收斂,抗風(fēng)性良好。
表2列出了不同風(fēng)速下修正前后側(cè)向偏差峰值Zlmax、穩(wěn)態(tài)時(shí)間tess(側(cè)向偏差幅值低于Zmax×5%的時(shí)刻)以及脫靶量T的具體數(shù)據(jù)(其中“∞”表示側(cè)向偏差并未收斂到Zmax×5%區(qū)域)。

表2 修正前后參數(shù)比較Table 2 Comparison of parameters before and after correction
由表2可以看出,修正前Zlmax均超過了3 m,即飛離激光波束,而修正后既保證了導(dǎo)彈始終在激光波束內(nèi)飛行,又保證了高精度打擊能力,脫靶量T小于0.1 m。采取修正措施后線偏差的穩(wěn)態(tài)時(shí)間延長了,這是時(shí)變的側(cè)滑角信息作為附加控制項(xiàng)持續(xù)作用的結(jié)果,但是在整個(gè)收斂過程中波動(dòng)的幅值是在容許范圍內(nèi)的。
本文主要研究了激光駕束制導(dǎo)導(dǎo)彈抗側(cè)風(fēng)干擾問題,通過將實(shí)時(shí)氣流側(cè)滑角反饋到控制端,達(dá)到了彈道修正的目的,并保證了高打擊精度、簡化了彈上設(shè)備。本文方法形式簡單,容易實(shí)現(xiàn)。在今后的研究中,將加入復(fù)雜的風(fēng)模型,綜合考慮大氣運(yùn)動(dòng)對(duì)彈道的影響;通過預(yù)先仿真,得到修正系數(shù)表,根據(jù)風(fēng)速和風(fēng)向進(jìn)行插值獲得修正系數(shù)。另外為了提高導(dǎo)彈在風(fēng)干擾下的命中率,也可以通過訓(xùn)練射手、修正初始發(fā)射角[11]來減弱風(fēng)的影響。
[1] 王婷,周軍.駕束制導(dǎo)導(dǎo)彈一體化制導(dǎo)控制系統(tǒng)設(shè)計(jì)[J].西北工業(yè)大學(xué)學(xué)報(bào),2009,27(2):173-176.
[2] 楊紹卿.反坦克導(dǎo)彈控制系統(tǒng)設(shè)計(jì)的狀態(tài)空間法初探——風(fēng)及未知常值干擾的補(bǔ)償問題[J].兵工學(xué)報(bào):彈箭分冊(cè),1985(1):21-29.
[3] 王艷麗,周洲,張琳.飛翼無人機(jī)側(cè)風(fēng)著陸控制方法研究[J].飛行力學(xué),2009,27(1):24-26.
[4] 李效明,許北辰,陳存蕓.一種運(yùn)載火箭減載控制工程方法[J].上海航天,2004 (6):7-9.
[5] 李衛(wèi)麗,嚴(yán)洪森,張維琴.風(fēng)干擾下某型導(dǎo)彈的彈道仿真 [J].計(jì)算機(jī)技術(shù)與發(fā)展,2011,21(1):246-249.
[6] 李新國,方群.有翼導(dǎo)彈飛行動(dòng)力學(xué)[M].西安:西北工業(yè)大學(xué)出版社,2004:5.
[7] Mori H.Control system design of flexible-body launch vehicles [J].Control Engineering Practice,1999,7(9):1163-1175.
[8] 郭廣明,羅琴.側(cè)向運(yùn)動(dòng)耦合對(duì)導(dǎo)彈穩(wěn)定裕度的影響[J].飛行力學(xué),2013,31(3):250-254.
[9] 黃漢橋,黃長強(qiáng),趙輝.考慮前饋?zhàn)饔玫腂TT導(dǎo)彈自動(dòng)駕駛儀設(shè)計(jì)方法研究[J].西北工業(yè)大學(xué)學(xué)報(bào),2012,30(3):307-313.
[10] 周鳳岐,盧曉東.最優(yōu)估計(jì)理論[M].北京:高等教育出版社,2009.
[11] 孫百安,姜水平.風(fēng)對(duì)BL-1A型增雨防雹火箭彈道的影響及修正 [J].氣象科技,2010,38(5):625-628.
(編輯:李怡)
Crosswind-proof control technique for laser beam-rider guidance missile
ZHAO Hui, ZHAO Bin, LU Xiao-dong, ZHOU Jun
(Institute of Precision Guidance and Control, NWPU, Xi’an 710072, China)
For the crosswind disturbance of the laser beam-rider guidance missile, an attitude correction program was proposed by controlling the air-path angle of sideslip based on the load control theory. In the premise of not increasing the equipment on the missile, the real-time air-path angle of sideslip was obtained by the estimated inertia unit information, and then was fed back to the control terminal. The lateral overload was decreased by adjusting the correction coefficient. The 6-DOF simulation results show that the missile without crosswind correction program is driven away from the laser field, while the guidance range errors of the improved method is fast convergence, the miss distance is less than 0.1 m under a crosswind disturbance at a speed of 24 m/s. It indicates that the modified method is effective.
crosswind disturbance; air-path angle of sideslip; lateral deviation; trajectory correction
2015-12-15;
2015-04-22;
時(shí)間:2015-06-24 15:03
西北工業(yè)大學(xué)基礎(chǔ)研究基金資助(JCT20130101)
趙輝(1990-),男,河北衡水人,碩士研究生,主要從事飛行器制導(dǎo)與控制技術(shù)研究。
TJ765
A
1002-0853(2015)05-0435-04