金雪
【摘要】數學思維是人腦與數學對象交互作用并按照一般思維規律認識數學內容的內在理性活動.在公式、定理、性質的教學過程中,教師精心編制一系列由簡單到復雜的變式訓練題,組織學生進行嘗試練習,引導學生參與知識的發現、探索、推導過程,可以提高思維的探究水平,更可以掌握具有廣泛性的思維方法.
【關鍵詞】數學思維;變式訓練
一、問題提出的背景
學生數學學習的認知水平一般分為三個層次:記憶模仿型、說明性理解型與探究性理解型.為了培養與提高學生的數學思維能力,引導學生向探究性理解型發展,教師在課堂教學中,要敢于和善于給學生提供一定的獨立思考、發現問題的條件和機會.適當地進行變式訓練、一題多解、一法多用,可以讓學生形成富于聯想的思維習慣.數學公式作為解題的工具,深刻理解并準確掌握數學公式是學好數學的第一關.數學公式應用廣泛,推導方法具有代表性,所以人們把它比喻為“數量關系的精髓”.在一般的數學教學中,我們通常是推導公式,首先教師講解例題進行示范,然后學生模仿反復練習.一兩堂課下來,學生對數學課的印象就是推導公式、代公式解題,純粹把數學課看成做題目的枯燥無味的課,長此以往,對數學課就越來越沒興趣.如何提高學生學習數學的興趣,讓學生真正地參與課堂,在實踐中培養學生的數學思維,是數學老師一直思考的問題.
二、案例再現
以五年制高等師范數學教材中的“二倍角的三角函數”這節內容為例,老師在引導學生推導出公式后,對公式進行變形研究,使學生能夠找到它的一些其他形式并進行相應的應用.這樣既能深刻理解公式,又可靈活應用于解題,課堂氣氛熱烈,學生學習積極性高.
公式的導出部分老師讓學生利用學過的正弦、余弦和正切的和角公式,化歸為二倍角公式,讓學生理解“二倍角” 與 “兩角和” 的內在聯系.
在公式的運用應用部分,老師是這樣設計的:
提問:二倍角公式結構特征有哪些?
師生互動:教師在黑板上板書且同時啟發學生注意公式結構中等號兩邊角度倍數的對比、系數的對比、冪次數的對比,學生思考并回答問題以達到熟練公式結構的目的.學生通過觀察比較,能很快地歸納出二倍角公式的結構特征.為了能很好地鞏固和理解公式中“二倍角”含義,也為下面靈活應用公式化解和求值做準備,教師設置了以下練習:梯度一 (讓學生理解倍角的相對性)
在以上問題中主要突出的是倍角的相對性,以及公式左右兩邊的角的變化.為了進一步鞏固所學公式與更深入熟練地掌握公式變形,特意由淺入深設計以下課堂練習以達到相關目的.學生對比二倍角公式的形式特點,基本能準確地填出結論,并且在給出結論的同時也真正理解了“二倍”的含義.二倍角的正弦公式、余弦公式是三角恒等變換中的重要公式,在理解和掌握公式的基礎上,若能對公式作一些變形,并在解題中予以靈活運用,則可激活思維,化繁為簡,使得解題過程更加簡潔明快.教師在學生理解梯度一的基礎上,再設計了以下兩組變式訓練:梯度二:(熟練公式結構并會用公式的逆用)
經過三個梯度的訓練,學生對公式的結構與公式的應用達到基本熟練之后,下一步就可以提供機會讓學生利用倍角公式進行求值運算、以培養學生運算、分析和邏輯推理能力,可以很好地完成本節課的教學目標之一與難點之一.
三、案例教學反思
上課班級的學生基礎相對較好,特別是男生,如果純粹是講公式后讓學生模仿做題目,學生沒有獨立思考的機會,沒有親自體驗公式和概念的形成過程,只能是做題目的機器,對知識一知半解,更不用說學以致用了.學生也會覺得沒有挑戰性,從而對數學學習缺乏積極性.學生只有在親自實踐中才能獲取新知識的能力、分析解決問題的能力,以及交流與合作的能力.老師在教學中對二倍角公式的深化變式,讓學生積極思維,既提高了學習的積極性,又加強了對公式的理解和應用.
數學的公式有很多的變式,這些變式為學生提供了廣闊的天地,同時在公式的變式過程中可以充分體現數學公式的轉化和簡化功能,從而有利于學生更深刻地理解數學公式的本質.通過探求公式的變式的應用,可以培養學生直覺思維、快速解題的能力,有利于培養學生的逆向思維、發散思維等,形成良好的思維品質.
(一)公式的變式應用可以培養學生簡單的直覺思維能力和解題能力
直覺思維是導致數學發現的關鍵,教師在教學中,鼓勵學生猜想,形成朦朧的直覺.讓學生猜想,不僅激發了他們努力解題,還教會了他們一種應用的思維方式.二倍角公式的熟練應用對于學習三角函數的性質起著很重要的作用.如學習y=sin2x的圖像及性質.再如梯度三中的練習sinπ16cosπ16cosπ8,學生看到相同的角,會聯想到正弦的二倍角公式,猜想填個系數即可,學生在掌握了二倍角公式的逆向變形特點后,就能很快的與公式進行對比,從而找到系數上的差別,并相應的進行增添,就可以很方便得出答案.(sinα-cosα)2和cos4β-sin4β的解題學生根據做題目的直覺經驗,自然會想到先用完全平方和平方差公式展開求解,教師再有意識地引導他們向縱深方向考慮,幫助理清來龍去脈,總結出方法和結論,學生的解題能力也會逐步提高.在教學過程中,有時設置一些順理成章的“陷阱”也是有益的,可以引導學生積極思維,在猜想、探究、修改的過程中加深對知識的理解和掌握.
(二)公式的變式應用可以培養學生的逆向思維能力
人們習慣于沿著事物發展的正方向去思考問題并尋求解決辦法.其實,對于某些問題,尤其是一些特殊問題,從結論往回推,倒過來思考,從求解回到已知條件,反過去想或許會使問題簡單化.數學教學中可表現為某些數學公式、法則等逆用來解決有關問題.如二倍角這節課中,很多學生對于數學課本中的公式很熟練,但對它們的逆向運用卻往往忽視.因此,老師在二倍角公式教學中,貫穿雙向思維訓練,除了讓學生理解概念本身及其常規應用外,還注意引導啟發學生反過來思考,從而加深對概念的理解與拓展.如梯度一和梯度二的設計,這樣正向和逆向敘述相結合,使學生對公式的理解更加深刻,知識掌握得更加靈活,對數學思維的訓練也起著重要的作用.
(三)公式的變式應用可以培養學生的發散思維能力
贊可夫說過:“凡是沒有發自內心求知欲和興趣的東西,是很容易從記憶中揮發掉的”.在課堂教學中應該適當給學生提供獨立思考問題、自己提問題的條件與機會為發散思維的培養創造良好的內、外部的環境.老師在教學過程給出(sinα-cosα)2 和cos4β-sin4β題目給出后,沒有直接板書講解,而是讓學生討論,給學生提供探索嘗試的機會.學生們躍躍欲試,積極動腦,一部分學生能自己利用二倍角公式和平方公式推算出結論,運用已學知識去解決新問題,并進行多種嘗試,學生的解題思維得到拓展,學習積極性提高.如果老師怕學生在課堂上聽不懂、吃不飽,總是在課堂上講個不停,即使提出問題也是匆匆而過,學生沒有進行充分思考問題的時間,這樣培養的學生也不可能具有探究性思考的習慣與能力,當然談不上培養發散思維了.
數學教學就是數學思維活動的教學.因此,在數學教學中展現思維活動,教師在課堂教學中應該精心設計,給學生充分思考問題的機會和時間,讓學生親自參與思維活動,不僅體現了這種教學思想,而且有利于提高學生的思維的探究水平,從而提高學生學習數學的興趣.