孫繼文
摘 要:隨著科技的迅猛發展與人們對道路質量要求越來越高,我們通過以往大量的實踐結果發現,由于地質雷達自身具有無損、精度高、分辨率高以及所耗成本低等特性,當前的路橋檢測部門應當將其最大限度地貫穿于道路施工以及檢測維修的整個過程當中去。該文主要闡述地質雷達技術的發展狀況以及相對應的誤差分析,希望能在今后得到一些借鑒和參考。
關鍵詞:路橋檢測 地質雷達技術 應用 誤差分析
中圖分類號:F407 文獻標識碼:A 文章編號:1674-098X(2015)06(c)-0000-0090-01
所謂的地質雷達檢測技術其實指的是一種具有精度高,與此同時還可以快速成像的高科技技術之一。歸納的說,其實這項技術主要就是借助地質雷達根據所要檢測的物體屬性發射與之對應的電波,不僅如此,還可以適當的接收部分對該物體加以判斷的發射波。經過多年來的努力研究以及在各個領域中的廣泛應用,地質雷達檢測技術作用十分顯著。
1 地質雷達技術的發展狀況以及勘測誤差分析
1.1 發展狀況
如果僅僅論地質雷達概念的提出可以追溯到20世紀10年代,然后在人們對其不斷加強研究的過程中得到越來越為迅猛的發展,而且涉及到的領域也是越來越廣泛。但是值得我們注意的是,由于雷達所發射出的電波穩定性較差,外加比較復雜,這樣一來就會對地質環境造成很大的破壞。鑒于此,一直到20世紀70年代后,隨著各種電子技術的興起與發展,雷達技術的應用領域也隨之廣泛起來,并于80年代終于使得第一臺雷達設備問世。自從這臺雷達設備的出現,廣大研究學者產生極其濃厚的興趣,并在未來的時間里取得了一些重大突破,其中以成像技術為代表,這樣一來就可以在很大程度上提高了它的分辨率,大大幫助到了路橋檢測。
1.2 地質雷達產生誤差分析
就這一點上來看,主要表現為:(1)反射信號時間差。通過調查發現,要想十分準確地對反射信號時間差進行記錄,我們首當其沖需要做的就是根據實際需要確定計算時間的起點。話雖如此,但是我們要是將探地雷達的觸發點(反射信號的)看作是物理時間的起點位置依然會存在一些問題。首先,直達波信號和地面反射信號的干擾如果比較強烈的話,會使整體記錄面貌變壞,這樣一來就會在一定程度上影響增益設置以及自動增益的使用效果。除此之外,天線的位置通常情況下都會隨著路況的不同而出現起伏顫動,在這個時候我們要想準確無誤的識別地面反射點的位置并非易事。鑒于此,要想盡可能的提高起始零點的標定精度,我們最為常用的做法就是將地質雷達配備自動調零設置,設同時將時間起點移到地面反射信號位置。
2 在公路檢測中的實際應用
通過以往大量的應用結果表明,公路路基在通常情況下會由于含水量過高、承載力較低、壓實度無法達標等綜合原因,會在很多時候造成路基產生過量沉陷,這樣一來就會形成空洞或者暗穴,情況嚴重的話局部還會產生滑坍等。另外,還會因為公路結構層透水性差而造成局部出現集水現象。如果是這樣的話就會產生軟弱體等病害。通過多年的實踐情況看來,形成公路病害的原因是多種多樣的,有本身質量所導致的,也有自然風化或者是外界作用產生的。有一點值得注意的是,路基和路面問題通常是結伴而行的,而并非獨立存在,因此在調查公路病害的過程中,查明“病因”顯得尤為重要。以下就是地質雷達技術在路橋檢測中的幾種主要應用。
2.1 檢測公路基層與路基損壞程度
通過實踐表明,如果檢測出基層及路基損壞的區段較多的話,在雷達資料上的結構層會表現為界面反射凹凸不平,反射波出現一定程度的扭曲。雖然說該段基層反射波起伏比較小。但連續性在通常情況下不是十分好的。如果發現路床反射非常微弱,但反射起伏程度比較大,這就可以從側面說明路基及基層已遭受外界的破壞。
2.2 檢測公路路面裂紋
通常而言,裂紋在高速公路病害異常中是肉眼難以捕捉到的。我們可以根據雷達探測原理可得出以下結論:頻率越高,探測越淺,分辨率也會隨之越高,反之亦然。從這一點上來看,雷達探測在通常情況下可有效解決淺層部位的裂紋異常現象,如果是深部的裂紋我們最好的辦法就是采用超聲波探測法。主要表現為向兩邊分散的產生一定角度的同相軸。
3 地質雷達技術在修建橋梁工程中的實際應用
通過多年的實踐表明,地質雷達技術在橋梁修筑中的應用主要表現為以下幾個方面。
3.1 地質雷達應用于橋梁施工前的地質勘察
換言之,就是可以通過這種地質雷達來有效檢測出地質條件,從而發現一些溶洞、夾泥層以及裂縫等所謂的不良地質體,這樣一來就可以很好的提醒施工單位進行安全施工做好充足的準備,比方說某一個橋梁沉降檢測中,發現該橋梁竣工通車之后在很短的時間里有部分橋面出現了不同程度的下沉,在這個時候我們應用地質雷達就很容易的發現這是由于地層的底部位置存在較多的裂縫帶以及溶洞。
3.2 地質雷達應用于橋梁施工過程中
通過多次的實踐發現,在樁基施工之前我們可以通過雷達來有效的檢測出基地的實際地質情況,并且在第一時間內發現溶洞或者夾泥層等一些不良現象后迅速的予以處理,從而保證施工質量能夠達到設計要求,比方說在LTD2100+GC400兆赫的檢測過程中,施工人員可以在基底位置布置兩條測線(具體是安置在哪個位置依據實際情況而定),然后可以沿著邊線緊緊貼住移動地面天線進行檢測。經過正確的操作過后發現在基底下方的3m處存在較為強烈的反射信號,工作人員挖開后果然是夾泥層,這就證明了雷達檢測結果的準確無誤。
3.3 在橋梁建筑竣工后進行驗收以及維護中的應用
我們可以發現,在竣工后我們可以通過地質雷達技術正確的檢測出鋼結構的水平以及垂直分布情況,與此同時還能夠發現橋梁結構的內部存在哪些不足之處等,如果一旦發現鋼結構分布情況與設計資料當中的路面厚度不相符合,或者是施工與運營過程中所導致的內部缺陷等相關問題后,施工單位可以派遣專職人員在第一時間進行處理,從而最大限度地減少人力、物力、財力的重大損失,保障橋梁為人們出行提供便利。
4 結語
綜上所述,隨著地質雷達技術的快速發展,因其自身所具備的獨特性,已經應用到了社會的各個領域,比方說在工程施工過程中,可以勘測該工程的地質情況等。除此之外,我們必將會在今后對這項技術不斷進行研究和實踐的基礎上加以完善,這樣一來就可以更加方便地借助更多較為先進的技術,來提供更加扎實的技術保障,從而推動地質雷達技術的進一步發展,為路橋檢測做出重要的貢獻。
參考文獻
[1] 陳兆峰.關于路橋檢測的地質雷達技術的研究[J].建筑工程技術與設計,2014(17).
[2] 王慶明,王友星.用于路橋檢測的地質雷達技術[J].城市建設理論研究:電子版,2013(22).
[3] 鄭建鋒.用于路橋檢測的地質雷達技術[J].科技傳播,2011(3):218.
[4] 玉英.地質雷達技術在公路路面檢測中的應用[J].交通標準化,2014(12).