999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于重抽樣分布的一類模糊累積和控制圖

2015-06-23 16:22:01王達布希拉圖黃惠婷張秋蕓
廣州大學學報(自然科學版) 2015年3期
關鍵詞:科學研究

王達布希拉圖,黃惠婷,蔣 翠,張秋蕓

(廣州大學a.經(jīng)濟與統(tǒng)計學院;b.嶺南統(tǒng)計科學研究中心;c.數(shù)學與信息科學學院,廣東廣州 510006)

基于重抽樣分布的一類模糊累積和控制圖

王達布希拉圖a,b,黃惠婷c,蔣 翠c,張秋蕓c

(廣州大學a.經(jīng)濟與統(tǒng)計學院;b.嶺南統(tǒng)計科學研究中心;c.數(shù)學與信息科學學院,廣東廣州 510006)

過程變量在代表產(chǎn)品或服務過程信息時并非完美,而使用模糊數(shù)可能是另一較好途徑.文章進一步完善模糊累積和控制圖,其中使用中心和擴展具有重抽樣分布的模糊隨機變量,并給出模擬例證.

控制圖;模糊數(shù)據(jù);重抽樣

0 Introduction

Statistical Process Control(SPC)is a very importantmethod for bringing processes into control and maintaining them in such a state.Control charts are the principle tools that have been designed and applied for the purposes of SPC[1].Cumulative Sum(CUSUM)control chart proposed by PAGE[2]is one used in process quality controlwidespread.

The traditional control charts were established for monitoring exact data from process.However,sometimeswe are not able to obtain exact numerical data,butwe dealwith imprecise(fuzzy)or even linguistic data,e.g.,the food taste data given by the customers,the quality data obtained through the evaluation of inspectors,the data for describing human perceptions,etc.There have been some papers dedicated for the design of control charts with linguistic data or fuzzy data.WANG[3]proposed the representative values control charts with both probability rule and membership function decision rules,for which the linguistic data(fuzzy data)are transformed into scalars referred to as representative values of the fuzzy data.In their paper four kinds of transformation formula have been proposed:fuzzy mode,fuzzy midrange,fuzzy median and fuzzy average.YU,et al[4]proposed a sequential probability ratio test(SPRT)control scheme for linguistic data based on KANAGAWA,et al's estimated probability densityfunction,which lays a base for constructing a CUSUM chart with linguistic data.However,in their approach fuzzy data have to be transformed into their respective representative values.WANG[5]presented a CUSUM control chartwith fuzzy data by using a novel representative value that is a sum of central value of the fuzzy data with its fuzziness value. GüLABY[6-7]present a direct fuzzy approach to construct a control chart with fuzzy data.FARAZ,et al[8]present a Shewhart chart with trapezoidal fuzzy data by using the concept of fuzzy random variables. GRZEGORZEWSKI[9]presented an outlook for statistical process control with fuzzy data and proposed a fuzzy Shewhart control chart in which the necessity index of strict dominance(NSD)proposed by DUBOIS is applied formaking decisions.

Most of the works mentioned above considered the control charts with representative values of fuzzy data.Since the representative value of a fuzzy data may result in losing important information included in original data,it is desirable to develop a suitable direct fuzzy way without using representative values.A sort of nonparametric CUSUM chart for LR-fuzzy data had been proposed in Ref.[10],on which we further consider some improvement and present some simulation.

1 Fuzzy data and sam plemoments

2 Some fuzzy approach for CUSUM

The conventional CUSUM chart is usually used formonitoring real valued quality characteristics data.For a given sequence of crisp observations{Xn,n=1,2,…}on normal population,themonitored parameter of interest is typically the processmean,μn=E(Xn).When the purpose is to detect a small change in the process mean,one might specify the levelsμ0andμ1>μ0(orμ1<μ0)such that under normal conditions the values ofμishould fall below(or above)μ0,and the values ofμnabove(or below)μ1are considered undesirable and should be detected as soon as possible.The CUSUM chart can be used tomonitor the abovementioned processwith the cumulative sum test-statistics Sn=max{0,S(n-1)+Xn-K}(or Tn=min{0,T(n-1)+Xn+K})and signal if Sn>h(or Tn<-h(huán)),where h is the control limit derived from a confidence interval assuming a Gaussian distributed observation,which usually equals four or five times the standard deviation of sample,Xn(n≥1)are the samplemeans at time tn,S0=T0=0,and K is the reference value.

Assume that in the phase I stage of amonitored processwe can obtain the“in control”fuzzy process mean value?μ0and the measurement value Sd0of the fuzzy process variability based on a k group independent symmetric LR-number valued sample of size m,

Note thathere the“standardized”procedure is a formally standardization of a random variable,and of the“standardized”result(yi,lyi,lyi)LLthe center variable yiis an approximate standardization of the original center variable m,however,the spread variable lyimay be not an approximate standardization of the original spread variable l.

The test statistics Sn,Tnof a two-sided CUSUM chart then will be expanded to case of fuzzy data(fuzzy quantities)depending upon the samplesi,i=1,…,k.By Extension principle[11],the fuzzy version of the test statistic can be defined as

Table 1 The 4 group of size 5 symmetric triangular fuzzy sample data in phase I

Table 2 The 4 group of size 5 fuzzy data in phase IIand the control status with R1 and R2(K=0.3)

3 Exam ple of simulation

[1] WETHERILLG,BROWN D.Statistical process control[M].London:Chapman and Hall,1991.

[2] PAGE E.Continuous inspection schemes[J].Biometrika,1954,41:100-114.

[3] WANG J,RAZ T.On the construction of control charts using linguistic variables[J].Int JProd Res,1990,28:477-487.

[4] YU F,LOW C,CHENG S.A design for an SPRT control scheme based on linguistic data[J].Int JProd Res,2003,41(6):1299-1309.

[5] WANG D.A CUSUM control chart for fuzzy quality data[C]∥Advances in Soft Computing,Berlin,Heidelberg:Springer Verlag,2006,37:357-364.

[6] GüLABY M,KAHARAMAN C.An alternative approach to fuzzy control charts:Direct fuzzy approach[J].Inf Sci,2007,177:1463-1480.

[7] GüLABY M,KAHARAMANC.Developmentof fuzzy process control charts and fuzzy unnatural pattern analysis[J].Compu Stat Data Anal,2006,51:433-445.

[8] FARAZ A,SHAPIRO A.An application of fuzzy random variables to control charts[J].Fuz Set Sys,2010,161:2684-2694.

[9] GRZEGORZEWSKIPP,HRYNIEWICZO.Softmethods in statisticalquality control[J].ContCyber,2000,29:119-140.

[10]WANG D,HRYNIEWICZO.The design of a CUSUM control chart for LR-fuzzy data[C]∥Proceedings of the 2013 Joint IFSAWorld Congress NAFIPSAnnual Meeting,Edmonton,Canada,June 24-28,2013:175-180.

[11]ZADEH L.The concept of a linguistic variable and its application to approximate reasoning Parts 1~3[J].Inf Sci,1975(8):199-249;1975(8):301-357;1975(9):43-80.

[12]K?RNER R.An asymptoticα-test for the expectation of random fuzzy variables[J].JStat Plan Infer,2000,83:331-346.

[13]FENG Y,HU L,SHU H.The variance and covariance of fuzzy random variables and their applications[J].Fuz Set Sys,2001,120:487-497.

[14]NGUYEN H.A note on the extension principle for fuzzy sets[J].JMath Anal Appl,1978,64:369-380.

【責任編輯:周 全】

A fuzzy CUSUM control chart based on bootstrap distribution

WANG Dabuxilatua,b,HUANG Hui-tingc,JIANG Cuic,ZHANG Q iu-yunc

(a.School of Economics and Statistics;b.Lingnan Research Centre for Statistical Science;
c.School of Mathematics and Information Sciences,Guangzhou University,Guangzhou 510006,China)

The process variables are sometimes imperfect in representing the observed process information about products or services.Fuzzy numbers are recommended to be used in above cases.We further improve a fuzzy Cumulative Sum(CUSUM)control chart,in which fuzzy data are viewed as a fuzzy random variable with a bootstrap distribution for the center and two spreads.A simulation example is given.

control chart;fuzzy data;bootstrap

O 213.1;O 159

A

date:2015-02-08; Revised date:2015-03-07

s:Research supported by NNSF of China(11271096)

O 213.1;O 159

A

1671-4229(2015)03-0004-06

Biography:WANG Dabuxilatu(1959-),male,professor.E-mail:wangdabu@gzhu.edu.cn

猜你喜歡
科學研究
歡迎訂閱《林業(yè)科學研究》
《老齡科學研究》(月刊)歡迎訂閱
《環(huán)境科學研究》第五屆編委會名單
《環(huán)境科學研究》第五屆編委會名單
《環(huán)境科學研究》第五屆編委會名單(
歡迎訂閱《紡織科學研究》
《環(huán)境科學研究》第五屆編委會名單
紡織科學研究
《環(huán)境科學研究》第五屆編委會名單
紡織科學研究
主站蜘蛛池模板: 国产成人精品三级| 欧美在线网| 国产精品永久在线| 国产一级特黄aa级特黄裸毛片 | 亚洲αv毛片| 2022国产无码在线| 精品撒尿视频一区二区三区| 国产成人1024精品| 欧美精品成人一区二区在线观看| 最新日本中文字幕| 青草午夜精品视频在线观看| 亚洲欧美成人综合| 国产亚洲精| 广东一级毛片| 欧美亚洲网| 青青草原国产精品啪啪视频| 伊人网址在线| 久久成人免费| 婷婷成人综合| 成人在线观看不卡| 国产不卡在线看| 亚洲欧美h| 亚洲天堂777| 福利在线一区| 午夜啪啪网| 国产欧美在线观看视频| 精品国产成人三级在线观看| 手机永久AV在线播放| 国产人人射| 国产一级视频久久| 激情五月婷婷综合网| 国国产a国产片免费麻豆| 91在线中文| 亚洲第一页在线观看| 无码免费的亚洲视频| 久久国产拍爱| 毛片免费在线视频| 亚洲日本一本dvd高清| 亚洲色图欧美激情| 四虎国产永久在线观看| 无遮挡国产高潮视频免费观看| 在线一级毛片| 欧美在线一级片| 69av免费视频| 看国产毛片| 午夜免费小视频| AV天堂资源福利在线观看| 韩日无码在线不卡| 日韩第一页在线| 国产爽爽视频| 四虎永久免费网站| 制服丝袜一区二区三区在线| 免费国产福利| 日韩在线网址| 国产福利免费观看| 日韩国产精品无码一区二区三区 | 91精品视频在线播放| www欧美在线观看| 538国产视频| 中文字幕首页系列人妻| 亚洲第一成年人网站| 亚洲欧美综合在线观看| 依依成人精品无v国产| 亚洲色图在线观看| 欧美视频免费一区二区三区| www.av男人.com| Jizz国产色系免费| 亚洲中文字幕97久久精品少妇| 99成人在线观看| 亚洲国产精品无码AV| 女人av社区男人的天堂| 亚洲黄色成人| 综合天天色| 国产亚洲日韩av在线| 女人18一级毛片免费观看| 国内丰满少妇猛烈精品播| 国产精品分类视频分类一区| 人妻丰满熟妇av五码区| 欧美国产在线精品17p| 国产成人久视频免费| 亚洲 成人国产| 国产福利拍拍拍|