摘要:快速轉換抽樣系統由正常檢驗與嚴格檢驗之間快速交換的規范所形成,同時也是嚴格-正常-嚴格抽樣計劃的變形。它不同于嚴格-正常-嚴格抽樣計劃,轉換之間并不對允收次數和拒絕次數設限。文章所述研究中,快速轉換抽樣系統會給予一個抽樣樣本數n,并通過另外兩種抽樣策略對單次抽樣計劃與重復群集抽樣計劃依序做比較。
關鍵詞:抽樣檢驗計量;快速轉換抽樣系統;正常檢驗;嚴格檢驗;嚴格-正常-嚴格抽樣計劃 文獻標識碼:A
中圖分類號:F403 文章編號:1009-2374(2015)27-0012-02 DOI:10.13535/j.cnki.11-4406/n.2015.27.007
1 抽樣檢驗計量
在執行抽樣檢驗時,必須針對產品的質量特性、批量大小、制成不良率以及買賣雙方所能承受的風險,透過這些考慮因素來制定一個合適的驗收抽樣計劃,不僅可以給予買賣雙方在互動中得到良好的依據,更可以透過不同的抽樣策略來調整買賣雙方的需求。而設計驗收抽樣計劃方法眾多,其中又以OC曲線兩點法最為廣泛使用。此方法利用給定兩點必須通過OC曲線為原則,而只要制定出作業曲線上兩點(AQL,1-a)以及(LTPD,),
即可透過曲線兩點制來設計出抽樣計劃,其中AQL(Acceptable Quality Level)為在生產者風險下的質量水平,也稱為可接受水平。
而LTPD(Lot Tolerance Percent Defective)為批量容忍缺陷比率,這表示顧客心目中所能接受的最低質量水平,通常是顧客心中所認定最差但尚可維持產品正常使用的質量水平。a亦即所為的生產者風險或稱犯typeⅠ錯誤的幾率,也就是拒絕一批好的產品幾率。亦即所為的消費者風險,或稱犯typeⅡ錯誤的幾率,也就是接受一批不合格的產品幾率。
假設不良品比率p=AQL,C被生產者視為可出廠產品最大不良率的制程水平。當供貨商的不良率p=AQL小于100PPM時,則產品被接受的幾率大約會大于100(1-a)%,可以由C與其不良率之關系計算出C=1.2397,當顧客的最低接受率p=LTPD大于1000PPM時,則產品被接受的幾率將不會大于100%,可以計算出CLTPD=1.0301。本研究之計劃參數為n、k與k,其中n為抽樣樣本數,k為正常檢驗的臨界值,k為嚴格檢驗的臨界值,可以從下列兩個非線性方程式求解而得:
(1)
本研究中欲將制程能力指標C與計量型快速轉換抽樣系統做結合。當的分布為b(3)t(),t()的抽樣分配為非中心t分配,其中=3,因此,質量水平為C時,產品被接受的幾率P(C)可以表示成:
(3)
而在正常檢驗與嚴格檢驗下允收幾率分別可表示
如下:
(4)
然而本研究之快速轉換抽樣系統透過OC曲線兩點法可以制定出下列OC曲線方程式:
(6)
圖1為OC曲線圖在固定臨界值k=1.00與k=1.25的情況下,觀察樣本數n=50、100、150、200的變化情形。從圖1中我們可以觀察到,當樣本數n越大,OC曲線越接近理想中的OC曲線(即為斜率越來越大),這也說明了抽樣檢驗的檢定力越好。
圖1 OC曲線圖在固定臨界值
圖1在k=1.00與k=1.25下,不同樣本數n的OC曲線變化為了保障買賣雙方所能夠承受的風險,故必須同時求解下列兩條不等式:
2 非線性規劃求解
本研究的未知參數為n、k與k,而我們必須透過式(7)和式(8)兩條不等式求解,然而未知參數有三個(n,k,k),僅有兩條不等式,可能會有多重解。
因此參考過去文獻Balamurali and Jun(2009)的非線性規劃概念,我們考慮最小的n為目標函數,設計成一個非線性規劃的優化模型來求解計劃參數(n,
k,k):
本研究參考學者Balamurali and Jun(2007)與Aslam(2013)兩篇文獻中,求解非線性規劃所使用之序列二次規劃算法(Sequential Quadratic Programming,SQP),并利用軟件Matlab撰寫程序來求解,例如當p=100、p=1000以及a=0.05、=0.1時,而求解出之計劃參數為(n,k,k)=(60,1.0301,1.2062)。
在執行驗收抽樣時所需的檢驗樣本數n=60,正常檢驗時的判斷臨界值k=1.0301,而嚴格檢驗時的判斷臨界值k=1.2062。故抽出的60個樣本數中,所計算出之檢定統計量≥k,則接收此貨批,否則拒絕此貨批并于下次檢驗時采取嚴格檢驗。
為了在實際操作上更方便地使用此抽樣策略,本研究計算不同a與風險的情況下及p與p的組合,所求得之樣本數n以及正常檢驗與嚴格檢驗的臨界值k和k。
3 計劃操作程序
為了要判斷制程是否有達到制程能力的要求,必須要選擇一個有意義的臨界值來檢定制程能力,因此在檢定的過程中我們必須先決定制程能力水平CAQL和CLTPD(或者質量要求水平pAQL以及pLTPD)以及a與風險。如果CI≥CAQL則可說明產品的品質較高,即接收此貨批的幾率必定大于等于1-a,若CI≤CLTPD則可說明此產品質量較低,即接收此貨批的幾率將不會超過。而決定完制程能力水平以及風險條件后,可以透過對照表格,找出在此驗收抽樣計劃中所需要的抽樣樣本n以及臨界值k與k。
4 結語
透過上述的制程能力水平與風險設計,再對照計劃參數,可以計算出抽取樣本的檢定統計量,從正常檢驗開始,假設>k則允收此貨批,否則拒絕此貨批并于下次抽樣檢驗時采取嚴格檢驗;假設于嚴格檢驗時>k則接收此貨批,并于下次抽樣檢驗時回到正常檢驗,否則拒絕此貨批,并于下次抽樣檢驗時繼續采取嚴格檢驗,為讓此快速轉換抽樣系統使用步驟能更清楚明了,故將檢驗操作程序詳細說明如下:
步驟一:從正常檢驗開始,抽取一貨批樣本數n,并計算出檢定統計量,判斷標準為k。
步驟二:如果>k,接受此貨批,如果>k則拒絕此貨批并在下一次檢驗時從實施嚴格檢驗。
步驟三:如步驟一,抽取一貨批樣本數n,并計算出檢定統計量,判斷標準為k。
步驟四:如果 參考文獻 [1] 韓之俊,許前.質量管理[M].北京:科學出版社,2003. [2] 袁建國.抽樣檢驗原理與應用[M].北京:中國計量出版社,2002. 作者簡介:朱永峰(1980-),男,長沙市望城區質量技術監督局工程師,在職研究生。 (責任編輯:周 瓊)