涂艷陽,李 倩,張永生 (第四軍醫大學:唐都醫院實驗外科,唐都醫院,陜西 西安70038)
膠質母細胞瘤(glioblastomamultiforme,GBM)是最常見的、致死率最高的成人腦腫瘤,約占所有膠質瘤的60%~70%.雖然對膠質母細胞瘤的治療取得了進步,但GBM患者的平均存活時間仍然較短,約為15個月[1].根據其臨床特點,GBM被劃分為原發性和繼發性膠質母細胞瘤.原發性膠質母細胞瘤進展迅速,無癌前病變;繼發性膠質母細胞瘤可進展為彌漫性星形細胞瘤(WHOⅡ級)或間變性星形細胞瘤(WHOⅢ級)[2].最近GBM基因譜研究發現了一些對診斷和預后評估有用的“生物標記物”,如異檸檬酸脫氫酶1(isocitrate dehydrogenase 1,IDH1)突變,該突變在繼發性膠質母細胞瘤中較常見(>80%),但在原發性膠質母細胞瘤中很少見(<5%)[3-5].癌癥基因組圖譜(Cancer Genome Atlas,TCGA)研究基于基因表達水平把GBM分為四類分子分型:前神經元(proneural)、神經元(neural)、經典(classical)和間葉(mesenchymal)[6],加深了對原發性和繼發性膠質母細胞瘤基因組改變的認識(表1).
最近大規模基因組分析明確了GBM的瘤內異質性,從而進一步細化了該病的病理組織學分類.TCGA研究揭示了GBM的遺傳和表觀遺傳改變,及具有潛在預后或診斷價值的生物標記物,如TP53突變、IDH1突變、表皮生長因子受體(epidermal growth factor receptor,EGFR)的擴增或突變以及氧(6)-甲基鳥嘌呤-DNA甲基轉移酶(O(6)-methylguanine-DNA methyltransferase,MGMT)啟動子甲基化[7].
瘤內分子異質性是臨床上對抗腫瘤復發、侵襲所面臨的主要挑戰.而靶向治療能夠針對性地作用于高表達特定蛋白的一類細胞亞群,而不影響其它細胞,通過這種篩選,其它細胞亞群則繼續增殖[8].兩個廣泛應用的靶向治療方案為:靶向EGFR或血管內皮生長因子的抑制劑.
基因表達譜分析表明GBM中存在與腫瘤發生相關的不同的分子和遺傳變異,并可依據其匹配的標準分級再次細分.Verhaak等[6]依據其不同的遺傳、表觀遺傳和轉錄修飾特點以及預測和診斷價值提出了四種分子亞型,包括前神經元、神經元、經典和間葉,如IDH1/2突變為前神經元,EGFR擴增為經典亞型、NF1缺失為間葉亞型[9].EGFR擴增、IDH1/2突變、MGMT啟動子甲基化、1p/19q共缺失是目前主要的生物標志物.

表1 原發性和繼發性膠質母細胞瘤不同的遺傳和臨床特征
2.1 表皮生長因子受體的擴增/突變體 EGFR是膠質細胞瘤最常見的治療靶點,40%~60%患者存在該基因擴增[10-11].EGFR修飾激活多種細胞信號傳導通路,并最終促進腫瘤的生長和進展.最常見的EGFR變異體是EGFRvIII,它是以配體非依賴的方式組成性激活EGFR,其對預后影響具有爭議.Heimberger等[11]稱EGFRvIII變異體與患者的治療結果不具有相關性.Pelloski等[12]的研究結果顯示其與預后不良相關,或是可作為較長存活期的預測分子[13],即使經過患者的分子預篩選,諸如厄洛替尼、吉非替尼或單克隆抗體等小分子抑制劑亦無法阻斷EGFR信號通路[14].因此,EGFR靶向治療的抗性機制及其基因擴增或變異體的預后價值仍需闡明[15].
2.2 異檸檬酸脫氫酶-1/異檸檬酸脫氫酶-2基因突變 IDH1和IDH2突變常見于II級、III級膠質瘤和繼發性膠質母細胞瘤,高達70%~75%,在原發性膠質母細胞瘤中較罕見,只有5%.IDH1突變與TP53突變、1P/19q缺失呈強相關性[3].IDH1突變通常存在于TP53突變的年輕患者中,且預后良好.IDH1/2突變也與表觀遺傳改變密切相關[4,16].IDH 突變、1p/19q共缺失及神經膠質瘤CpG島高甲基化表型(glioma-CpG island hypermethylator phenotype,G-CIMP)被認為是預后良好的標記物,也被用來預測化療反應[17].
2.3 氧(6)-甲基鳥嘌呤-DNA甲基轉移酶啟動子甲基化 MGMT編碼DNA修復酶能修復使用替莫唑胺烷化物化療而產生的細胞毒性產物.MGMT的高甲基化或表觀遺傳沉默失活了DNA修復能力,使腫瘤細胞對治療更敏感[18].MGMT啟動子甲基化是IDH1/2突變/G-CIMP陽性神經膠質瘤的常見特征,而在G-CIMP陰性的原發性膠質母細胞瘤中不太普遍[19].
2.4 1型神經纖維瘤蛋白 NF1基因編碼1型神經纖維瘤蛋白,這是一種腫瘤抑癌基因,負向調節Ras和哺乳動物星形細胞瘤的雷帕霉素靶點[20].NF1基因突變是膠質母細胞瘤間葉亞型最常見的特征[6].降解增加和蛋白激酶C的過度活化均能導致NF1蛋白失活[21].NF1缺失可以通過Ras信號通路的介導過度激活(mammalian target of rapamycin,mTOR),從而促進細胞增殖和遷移[22].雖然NF1的純合缺失在體內體外均能促進細胞增殖,但這一單一因素不足以誘導遺傳工程小鼠模型的腫瘤形成[23].一些研究報道利用基因工程小鼠模型顯示,當神經膠質細胞的NF1純合性丟失與TP53突變相關聯時會誘導形成惡性星形細胞瘤[24],并且當同時發生磷酸酶、張力蛋白同源缺失,則會進一步進展為膠質母細胞瘤[25].
2.5 血小板衍生的生長因子受體α擴增 血小板衍生的生長因子受體α(platelet-derived growth factor receptor alpha,PDGFRA)基因在約13%的GBM中都有擴增,主要存在于前神經元亞型[6,9].PDGF 和PDGFR擴增已被證明與侵襲性腦膠質瘤生長相關.PDGFR和(或)其配體表達可通過自分泌、旁分泌途徑促進腫瘤發生發展[26].此外,PDGFR可以非配體依賴的方式激活.PDGFRAΔ8,9是一種 PDGFRA的基因內缺失,與非配體依賴的下游c-Jun磷酸化相關聯[27].點突變只能在Ⅳ級膠質瘤中檢測到,表明PDGFRA是這類患者潛在的治療靶點.
瘤內異質性具有兩面性:一方面可作為預測預后的生物標記物來指導個體化治療,另一方面它又是靶向治療失敗的誘導因素.GBM的遺傳改變主要涉及三大信號通路包括:RTK/RAS/PI3K,P53/MDM2/MDM4和 RB/CDK4/INK4A[18].表 2 列出了一些臨床試驗中常見的靶向治療.但是,諸如貝伐單抗的靶向藥物和目前臨床上的標準治療相比并沒有顯現出較好的療效,患者總生存期也未見延長[28].腫瘤亞克隆多樣性、藥物滲透性差和其他代償途徑的激活均會造成治療的失利[29].

表2 常見的突變基因和治療藥物
總之,細胞亞型和新的生物標記物的鑒定,例如IDH1,有效地補充了傳統的病理組織學分級,有助于進一步提高疾病的預后預測能力.然而,由于診斷方法的局限性以及腫瘤進展過程中的復雜變化,使得從根本上預測此類腫瘤的治療效果仍有難度.因此,個體化治療從一個理念到真正轉化成臨床實踐,滿足臨床治療需求仍有很長的路要走.采用靶向不同信號通路的多種抑制劑聯合治療或調控分子靶向劑都可能是未來膠質母細胞瘤治療的發展方向.
[1]Ohgaki H,Kleihues P.Epidemiology and etiology of gliomas[J].Acta Neuropathol,2005,109(1):93-108.
[2]Peiffer J,Kleihues P.Hans-Joachim Scherer(1906-1945),pioneer in glioma research[J].Brain Pathol,1999,9(2):241-245.
[3]Watanabe T,Nobusawa S,Kleihues P,et al.IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas[J].Am J Pathol,2009,174(4):1149-1153.
[4]Nobusawa S,Watanabe T,Kleihues P,et al.IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas[J].Clin Cancer Res,2009,15(19):6002-6007.
[5]Killela PJ,Pirozzi CJ,Healy P,et al.Mutations in IDH1,IDH2,and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas[J].Oncotarget,2014,5(6):1515-1525.
[6]Verhaak RG,Hoadley KA,Purdom E,et al.Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA,IDH1,EGFR,and NF1[J].Cancer Cell,2010,17(1):98-110.
[7]The Cancer Genome AtlasResearch Network.Comprehensive genomic characterization defines human glioblastoma genes and core pathways[J].Nature,2008,455(7216):1061-1068.
[8]Bonavia R,Inda MM,Cavenee WK,et al.Heterogeneity maintenance in glioblastoma:a social network[J].Cancer Res,2011,71(12):4055-4060.
[9]Phillips HS,Kharbanda S,Chen R,et al.Molecular subclasses of high-grade glioma predict prognosis,delineate a pattern of disease progression,and resemble stages in neurogenesis[J].Cancer Cell,2006,9(3):157-173.
[10]Patel M,Vogelbaum MA,Barnett GH,et al.Molecular targeted therapy in recurrent glioblastoma:current challenges and future directions[J].Expert Opin Investig Drugs,2012,21(9):1247-1266.
[11]Heimberger AB,Hlatky R,Suki D,et al.Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients[J].Clin Cancer Res,2005,11(4):1462-1466.
[12]Pelloski CE,Ballman KV,Furth AF,et al.Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma[J].J Clin Oncol,2007,25(16):2288-2294.
[13]Montano N,Cenci T,Martini M,et al.Expression of EGFRvIII in glioblastoma:prognostic significance revisited[J]. Neoplasia,2011,13(12):1113-1121.
[14]Hegi ME,Rajakannu P,Weller M.Epidermal growth factor receptor:a re-emerging target in glioblastoma[J].Curr Opin Neurol,2012,25(6):774-779.
[15]Gan HK,Cvrljevic AN,Johns TG.The epidermal growth factor receptor variant III(EGFRvIII):where wild things are altered[J].FEBS J,2013,280(21):5350-5370.
[16]Weller M,Felsberg J,Hartmann C,et al.Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma:a prospective translational study of the German Glioma Network[J].J Clin Oncol,2009,27(34):5743-5750.
[17]Cairncross G,Wang M,Shaw E,et al.Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma:long-term results of RTOG 9402[J].J Clin Oncol,2013,31(3):337-343.
[18]Brennan CW,Verhaak RG,McKenna A,et al.The somatic genomic landscape of glioblastoma[J].Cell,2013,155(2):462-477.
[19]Wick W,Weller M,van den Bent M,et al.MGMT testing--the challenges for biomarker-based glioma treatment[J].Nat Rev Neurol,2014,10(7):372-385.
[20]Nissan MH,Pratilas CA,Jones AM,et al.Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence[J].Cancer Res,2014,74(8):2340-2350.
[21]McGillicuddy LT,Fromm JA,Hollstein PE,et al.Proteasomal and genetic inactivation of the NF1 tumor suppressor in gliomagenesis[J].Cancer Cell,2009,16(1):44-54.
[22]Sandsmark DK,Zhang H,Hegedus B,et al.Nucleophosmin mediates mammalian target of rapamycin-dependent actin cytoskeleton dynamics and proliferation in neurofibromin-deficient astrocytes[J].Cancer Res,2007,67(10):4790-4799.
[23]Bajenaru ML,Zhu Y,Hedrick NM,et al.Astrocyte-specific inactivation of the neurofibromatosis 1 gene(NF1)is insufficient for astrocytoma formation[J].Mol Cell Biol,2002,22(14):5100-5113.
[24]Zhu Y,Guignard F,Zhao D,et al.Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma[J].Cancer Cell,2005,8(2):119-130.
[25]Kwon CH,Zhao D,Chen J,et al.Pten haploinsufficiency acceleratesformation of high-grade astrocytomas[J].Cancer Res,2008,68(9):3286-3294.
[26]Assanah MC,Bruce JN,Suzuki SO,et al.PDGF stimulates the massive expansion of glial progenitors in the neonatal forebrain[J].Glia,2009,57(16):1835-1847.
[27]Clarke ID,Dirks PB.A human brain tumor-derived PDGFR-alpha deletion mutant is transforming[J].Oncogene,2003,22(5):722-733.
[28]Chinot OL,Wick W,Mason W,et al.Bevacizumab plus radiotherapytemozolomide for newly diagnosed glioblastoma[J].N Engl J Med,2014,370(8):709-722.
[29]Wen PY,Chang SM,Lamborn KR,et al.Phase I/II study of erlotinib and temsirolimus for patients with recurrent malignant gliomas:North American Brain Tumor Consortium trial 04-02[J].Neuro Oncol,2014,16(4):567-578.
[30]Gallego O,Cuatrecasas M,Benavides M,et al.Efficacy of erlotinib in patients with relapsed gliobastoma multiforme who expressed EGFRVIII and PTEN determined by immunohistochemistry[J].J Neurooncol,2014,116(2):413-419.
[31]Chakravarti A,Wang M,Robins HI,et al.RTOG 0211:a phase 1/2 study of radiation therapy with concurrent gefitinib for newly diagnosed glioblastoma patients[J].Int J Radiat Oncol Biol Phys,2013,85(5):1206-1211.
[32]Peereboom DM,Ahluwalia MS,Ye X,et al.NABTT 0502:a phase II and pharmacokinetic study of erlotinib and sorafenib for patients with progressive or recurrent glioblastoma multiforme[J].Neuro Oncol,2013,15(4):490-496.
[33]Dresemann G,Weller M,Rosenthal MA,et al.Imatinib in combination with hydroxyurea versus hydroxyurea alone as oral therapy in patients with progressive pretreated glioblastoma resistant to standard dose temozolomide[J].J Neurooncol,2010,96(3):393-402.
[34]See WL,Tan IL,Mukherjee J,et al.Sensitivity of glioblastomas to clinically available MEK inhibitors is defined by neurofibromin 1 deficiency[J].Cancer Res,2012,72(13):3350-3359.
[35]ClinicalTrials.gov[Internet].Bethesda(MD):National Library of Medicine.[cited 2014 Jun 5].Available from:http://clinicaltrials.gov/ct2/show/NCT01227434.