崔振明
摘要:導數在高數解題過程中的運用,最基本的作用是將解題過程變得簡單高效,將復雜的高數問題簡單化,為學生下一階段的數學學習做一個優質的鋪墊。導數在數學教學中的引入,加深了學生對函數的理解,激發了學生的創新思維,同時引導學生將導數解題的方式運用到實際生活中去,并且對激發學生學習數學的積極性有一定的作用;所以導數是數學教學中有利的輔助工具,注重引導學生用導數進行解題,并且能熟練掌握、靈活運用成為數學教學的教學目標之一。
關鍵詞:數學解題;價值分析
一、高中數學解題中的導數應用技巧
在高數的教學中,從教師的角度來說,熟悉導數的定義是學習導數的基礎,教師可以根據學生的學習進度適當調整導數章節的教學進度,如果基礎知識沒有掌握牢固,越往后知識越復雜就更不利于學生的理解和接受。在了解導數定義的基礎上,逐漸引入函數四則運算法則,將復雜的知識簡單化,用逐漸帶入的方式引導學生學習,打下一個堅實的導數學習基礎;學生要結合導數知識,將函數的極值判定和函數單調性要作為重要的知識點進行學習。
其實導數也不是很復雜難學的知識,只要將公式、法則、性質牢記于心,多做練習,自然就能熟練應用;運用導數求極值一般有固定的解題步驟:首先求出f′(x)的根值,根據所得數值,確定根兩側的函數單調性,再根據單調性呈現出來的遞增或遞減狀態,得到相應的最大值或最小值;如果兩側單調性相同,則說明此根處沒有相應的極值。
例如用導數求函數的極值:求函數f(x)=-x3+3x2+9x在單調區間[1,5]上的最大值;
解:函數f(x)的導數為f′(x)=-3x2+6x+9,所以在區間(-1,3)上是單調遞增的,即f′(x)﹥0,在區間(-∞,-1),(3,+∞)上是單調遞減的;對于區間[1,5]在[1,3]的范圍內f′(x)﹥0,即是遞增,在[3,5]范圍內f′(x)<0即為遞減,所以根據極值的定義可得出,在x=3處取得最大值,即f(3)=63。
這類題目在高數中是常見的基礎題型,在某一區間內求取極值的問題,根據導數的定義,在區間內如果兩側符號不同,那就說明這個區間存在極值,以此為根據,有清晰的解題思路,就能快速地解出答案。
導數在幾何解題的應用也可以有效的提高解題效率;比如常見的給出某M點坐標和曲線C方程,求出最終的切線方程,解題步驟基本上也是有固定的邏輯:首先確定M點是否在相應的曲線C上,另外要求得相應的導數f′(x);根據題目的實際情況會得出不一樣的數值,然后結合導數知識根據具體的情況運用相應的方程公式:如果點在曲線上,那么需要用的方程為y-y0=f′(x0)(x-x0);如果點不在曲線上,那么需要用到的方程為y1=f(x1),y0-y1=f′(x1)(x0-x1),以此為根據,得出具體的x1的值,這樣就能求得切線方程。
根據以上的解題實例可以看出,導數的運用不僅是代數,在幾何題目的解答步驟上都能使解題變得更高效簡單。學生在導數知識章節的學習中,對于導數的公式和兩個函數之間的四種求導法則,可以不用加以過多的證明,但一定要將公式和法則熟記于心,在遇到難題時,能夠正確使用相應的步驟和法則。學生在導數知識的學習過程中,也要注意適時的進行總結,對知識有一個連貫性的結構;注重知識的全面運用,可以提升學生自身的綜合學習能力。
二、高中數學解題中導數應用注意事項
在高中數學導數部分的教學過程中有一定的注意事項,首要要把握一定的教學要求,抓住教學的重點和難點,根據學生們的實際學習情況和接受進度進行相應的教學計劃調整,因為高數這門課程的思維連貫性,一旦某一部分沒有熟練掌握或者學習的不夠踏實,對接下來的學習會有很不好的影響,尤其在導數部分的學習,如果一開始的基礎知識沒有得到掌握,那么對這部分知識越往后就越難以消化。
要讓學生對導數的含義有一個很明確的了解,學習之初,對概念的認識也是很重要的學習內容,然后是對導數的各種性質的了解,因為導數在高數中起著很重要的作用,在很多題型中都可以用得到,而運用在解題中的時候,大都是依據導數的各種性質進行的,所以要求學生在熟悉導數的概念以后,對導數的性質也要牢記于心方能熟練運用。利用導數求得函數的單調性、極值、不等式和幾何方程等,可以有效地提高解題的效率和質量,從中考察學生對知識的掌握程度以及思維整合的能力。另外一點在運用導數求解的過程中,引導學生避免解題思路復雜化,全面考慮導數的各種性質找出最適合題目應用的,盡可能將其簡單化;在復合函數的學習過程中,要對將其計算法則進行重點學習,并做到熟練運用的程度,教師在復合函數練習題的難易程度要做好把控,考慮整體學生的學習情況進行安排布置,或者根據不同學習層次的學生,拿出多個具有針對性的練習方案,能更有效地幫助學生鞏固導數知識。
三、結語
教師在在導數的教學過程中,將理論知識形象化,結合一定的圖片表格,讓學生能更直觀的感受到導數的各性質之間的區別,同時也要注意引導學生將數學知識生活化,這樣也能更好地提高學生導數學習的效率。