劉娜,金小偉,王業耀,,呂怡兵,楊琦
1. 中國地質大學(北京)水資源與環境學院,北京 100083 2. 中國環境監測總站,北京 100012
我國地表水中藥物與個人護理品污染現狀及其繁殖毒性篩查
劉娜1,金小偉2,*,王業耀1,2,呂怡兵2,楊琦1
1. 中國地質大學(北京)水資源與環境學院,北京 100083 2. 中國環境監測總站,北京 100012
根據文獻報道,我國地表水中已檢出至少144種藥物及個人護理用品(pharmaceuticals and personal care products, PPCPs),包括抗生素、激素、其他藥物、個人護理品(personal care products, PCPs) 4大類,其中檢出濃度最高的達到了μg·L-1量級,在長期的污染下有可能對水生生物產生內分泌干擾效應或繁殖毒性,進而影響到整個水生生物種群的繁衍變化。因此,有必要根據我國地表水中PPCPs的污染水平,篩查出具有潛在生態風險的PPCPs。由于目前缺乏針對PPCPs類污染物的篩選體系,以國內外優先控制污染物篩選體系為基礎,借鑒基于風險的歐洲獸藥分級方法,利用風險指數(risk index, RI),篩選得出目前我國的地表水中有16種具有繁殖毒性的PPCPs的RI>1,包括1種抗生素,5種激素類藥物,3種其他藥物和7種PCPs,其中乙炔雌二醇(ethinylestradiol, EE2)的RI最高(115 730),其次是壬基酚(nonylphenol, NP)(1 796)、鄰苯二甲酸二丁酯(dibutyl phthalate, DBP) (255.31),對水生態環境有較高的風險的PPCPs需進一步進行較高層次的風險評價。
藥物和個人護理用品;篩查方法;繁殖毒性;地表水
藥物與個人護理品(pharmaceuticals and personal care products, PPCPs)的概念最早由Christian G. Daughton于1999年提出,其中藥物主要包括人類用藥和獸藥,如β-受體阻滯藥、消炎劑、脂肪調節劑、抗生素、止痛藥、鎮靜劑、抗癲癇藥、顯影劑、降壓藥、避孕藥等,個人護理品(personal care products, PCPs)主要為香料、化妝品、遮光劑、染發劑、發膠、香皂、洗發水等[1-3]。據統計,全世界生產和使用的各類藥物己達50 000余種,人用藥物年消費量約為3 000萬t左右,而用作獸藥及添加劑的藥品用量則更為龐大,全球每年僅抗生素類藥物一項的使用量就超過200萬t[4]。我國是藥物生產和使用大國之一,藥物產量占世界總產量的20%以上,生產藥物活性成分1 500多種[5]。同時,我國PCPs消耗量世界排名第三,占全球消耗量的6.5%,僅次于美國(19.1%)和日本(9.4%)[6]。由于大量的生產和使用,PPCPs源源不斷地進入地表水環境,形成“假性持續性”現象[7-9],其在環境中的存在已成為一個社會問題。PPCPs具有較強的生物活性,并且在一般環境條件下具有一定的持久性和生物累積性等特點,盡管環境殘留水平較低,但長期暴露依然會給人類健康和生態環境帶來潛在風險[10-11]。因此,本研究在充分調研我國地表水中PPCPs污染水平的基礎上,綜述國內外優先控制污染物篩選體系研究現狀,介紹了篩選體系框架,以及篩選過程中評價因子的確定和計算方法。并借鑒基于風險的歐洲獸藥分級方法,利用風險指數(risk index, RI),篩選出具有繁殖毒性的PPCPs及其潛在生態風險,以期為PPCPs管理提供理論依據及科學基礎。
據文獻報道,目前在我國河流、湖泊和近岸海域等天然水環境中檢出的PPCPs有144種,包括70種抗生素,33種激素類藥物,20種其他類藥物和21種PCPs,檢出濃度為ng·L-1~μg·L-1水平。分析最近10年文獻報道中各類PPCPs最高檢出濃度的分布區間(見圖1),抗生素類藥物濃度主要分布在10~100 ng·L-1(占44%)和100~1 000 ng·L-1(占26%);激素類藥物檢出濃度最低,42%分布在0~10 ng·L-1之間,44%分布在10~100 ng·L-1;其他藥物的最大檢出濃度均大于20 ng·L-1,主要分布在100~1 000 ng·L-1水平區間(占50%);PCPs的檢出濃度最高,50%的PCPs檢出濃度大于1 000 ng·L-1。

圖1 各類PPCPs污染水平分析Fig. 1 Contamination levels of PPCPs in Chinese surface waters
(1)抗生素類
在4類PPCPs中,抗生素的檢出頻率與濃度最高,6種抗生素的檢出頻率大于60%[12],包括磺胺甲噁唑(sulfadiazine, SD)、磺胺嘧啶(sulfamerazine, SM1)、諾氟沙星(norfloxacin, NFX)、氧氟沙星(ofloxacin, OFX)、紅霉素(erythromycin, ERY)和羅紅霉素(roxithromycin, ROX);11種抗生素的檢出濃度達到μg·L-1水平(見表1),占總檢出種類的16%,主要分布在貴陽南明河、渤海灣-海河流域和珠江流域。貴陽南明河檢出濃度最高,氯霉素(chloramphenicol, CAP)、四環素(tetracycline, TC)和土霉素(oxytetracycline, OTC)的檢出濃度均>3 μg·L-1,其中CAP高達19 μg·L-1[13],遠遠高于珠江266 ng·L-1[14];其次是渤海灣-海河流域,檢出濃度最高的是NFX,為6.8 μg·L-1[15];珠江流域的抗生素檢出濃度較低,ERY最高為1.54 μg·L-1[18]。
(2)激素類
我國地表水中激素類藥物主要有雌激素、雄激素、孕激素和糖皮質激素4類,目前相關報道主要集中在乙炔雌二醇(ethinylestradiol, EE2)、雌酮(estrone, E1)、雌二醇(estradiol, E2)、雌三醇(estriol, E3)、己烯雌酚(diethylstilbestrol, DES)、己烷雌酚(hexoestrol, HES)等6種雌激素。分析檢出濃度較高的3個地表水水體,大連排污河的污染最嚴重,6種雌激素均有檢出,且濃度>26.9 ng·L-1,其中EE2的濃度高達3 471.9 ng·L-1[19];其次是九龍江,在檢出的E1、E2、E3和DES等4種雌激素中,E1的濃度最大(321.02 ng·L-1)[20],DES濃度最小(24.9 ng·L-1)[19];Zhou等[21]在膠州灣檢測了EE2、E1、E2和E3,濃度分別為94 ng·L-1、180 ng·L-1、134 ng·L-1、24 ng·L-1,污染程度相對較小。
表1我國地表水中主要PPCPs的最大濃度及分布特征
Table 1The highest concentration and distribution characteristics of main PPCPs in Chinese surface waters

分類Classification化學品號CAS.化學品名稱Chemical濃度/(ng·L-1)Concentration/(ng·L-1)流域Watershed參考文獻Ref.抗生素Antibiotics56-75-7氯霉素Chloramphenicol,CAP19000貴陽南明河Nanmingriver,Guiyang[13]60-54-8四環素Tetracycline,TC6800貴陽南明河Nanmingriver,Guiyang[13]70458-96-7諾氟沙星Norfloxacin,NFX6800渤海灣Bohaibay[15]82419-36-1氧氟沙星Ofloxacin,OFX5100渤海灣Bohaibay[15]80214-83-1羅紅霉素Roxithromycin,ROX3700海河Haiheriver[16]79-57-2土霉素Oxytetracycline,OTC3000貴陽南明河Nanmingriver,Guiyang[13]23893-13-2脫水紅霉素Erythromycin-H2O, ERY-H2O1900維多利亞港VictoriaHarbour[17]114-07-8紅霉素Erythromycin,ERY1540石井河Shijingriver[18]57-68-1磺胺二甲基嘧啶Sulfamethazine,SM21390珠江Pearlriver[16]127-79-7磺胺嘧啶Sulfamerazine,SM11080石井河Shijingriver[14]57-62-5金霉素Chlorotetracycline,CTC1036九龍江Jiulongjiangriver[16]激素Hormones57-63-6乙炔雌二醇Ethynylestradiol,EE23471.9大連排污河Drainageriver,Dalian[19]53-16-7雌酮Estrone,E1321.02九龍江Jiulongjiangriver[20]50-28-2雌二醇17β-estradiol,E2134膠州灣Kiaochowbay[21]84-16-2己烷雌酚Hexoestrolum,HES103.7大連排污河Drainageriver,Dalian[19]50-27-1雌三醇Estriol,E394膠州灣Kiaochowbay[21]56-53-1己烯雌酚Diethylstilbestrol,DES28.2大連排污河Drainageriver,Dalian[19]其他藥物Otherdrugs69-72-7水楊酸Salicylicacid,SALA14736珠江Pearlriver[24]73334-07-3碘普羅胺Iopromide,IOP1439珠江Pearlriver[25]58560-75-1布洛芬Ibuprofen,IBU1417珠江Pearlriver[26]298-46-4卡馬西平Carbamazepine,CMP1090長江Yangtzeriver[27]53-86-1吲哚美辛Indomethacin,IND979長江Yangtzeriver[28]15307-86-5雙氯芬酸Diclofenac,DIC843長江Yangtzeriver[29]58-08-2咖啡因Caffeine,CAF824黃浦江Huangpuriver[29]644-62-2甲氯芬那酸Meclofenamicacid,MECA679長江Yangtzeriver[28]22204-53-1萘普生Naproxen,NAP328珠江Pearlriver[26]882-09-7氯貝酸Clofibricacid,CLOA248珠江Pearlriver[26]
對于另外3類激素,侯麗萍等[22]檢測了廣東四會鄧村河的10種雄激素和孕激素,結果顯示,1,4-雄烯二酮、反式雄酮、雄酮的最大濃度分別為30.46 ng·L-1、18.93 ng·L-1、12.05 ng·L-1,其他均小于10 ng·L-1;譚麗超等[23]檢測了南京市地表水中7種糖皮質類激素,檢出濃度為2.88~60.76 ng·L-1。
(3) 其他藥物類
我國地表水中檢出的其他藥物主要是消炎止痛藥、抗驚厥藥、降壓藥和降血脂藥。在檢出濃度最高的10種藥物中,報道最多的是布洛芬(ibuprofen, IBU)、卡馬西平(carbamazepine, CMP)、雙氯芬酸(diclofenac, DIC)、萘普生(naproxen, NAP)和氯貝酸(clofibric acid, CLOA),檢出頻率為30%~60%[12]。分析其他類藥物的地域分布,珠江和長江流域(包括其支流黃浦江)污染最嚴重,分別有5種藥物檢出,但珠江的污染程度明顯大于長江。其中水楊酸(SALA)的檢出濃度最高(14.736 μ g·L-1)[24],遠遠高于排名第二的碘普羅胺(IOP)(1.439 μg·L-1)[25]。
(4) PCPs類
PCPs中報道最多的是具有雌激素效應的壬基酚(nonylphenol, NP)和鄰苯二甲酸酯類(phthalic acid esters, PAEs),其次是三氯生(triclosan, TCS)和三氯卡班(triclocarban, TCC)。分析污染水平達到μg·L-1的10種PCPs(見表1),有6種屬于PAEs,其中鄰苯二甲酸二丁酯(dibutyl phthalate, DBP)的檢出濃度最高,為5.6168 μg·L-1[30],鄰苯二甲酸二(2-乙基己基)酯(di 2-ethylhexyl phthalate, DEHP)、鄰苯二甲酸二甲酯(dimethyl phthalate, DMP)、鄰苯二甲酸二乙酯(diethyl phthalate, DEP)和鄰苯二甲酸二正辛酯(di-n-octyl phthalate, DOP)等4種PAEs的檢出濃度均大于100 μg·L-1;NP在武漢東湖的檢出濃度為179.6 μg·L-1[31],遠遠高于其他地區的檢出水平(九龍江1.688 μg·L-1[20]);對羥基苯甲酸丙酯(propylparaben, PP)、對羥基苯甲酸甲酯(methylparaben, MP)和TCS在珠江的檢出濃度最高。此外,TCC在珠江支流石井河檢出濃度最高(88 ng·L-1[18]),麝香類化學品在海河的檢出濃度最高,為26.7~34.6 ng·L-1[33]。
由于水環境中的PPCPs種類繁多,各種PPCPs的理化性質及分子結構均不相同,在水環境中的濃度分布及遷移轉化過程也有很大差別,導致其生態風險也有所差異。為了正確評估PPCPs對水生態安全性的影響,首先需要建立一套有毒有害PPCPs篩查方法。
2.1篩選體系概況
近年來,歐美國家發展了一些針對環境中潛在有毒有害的化學物質以及獸藥的篩選方法[36]。Bu等[37]分析總結了最近20年國外各國政府及科研組研發的27種優先污染物篩選體系,根據使用目的,將篩選體系分為3類:第一類,通過篩選體系得到優先控制污染物名單,作為政府管理依據,如Hansen等[38]開發的EURAM;第二類,設定篩選條件,對目標污染物進行分級或排名,為開展下一步工作奠定基礎,如Kool等[39]開發的基于環境風險的歐洲獸藥分級方法和Mitchell等[40]開發的用于美國五大湖的污染物篩查的SCRAM;第三類,直接用來評價化學品對環境的影響或用于指導生命周期評價,如美國環保局(US EPA)開發的RSEI。
由于評價目的和篩選標準不同,各篩選體系之間區別較大,但篩選體系框架大致相同,主要分為4個步驟[37]:①根據商業生產和使用信息確定待篩選的化學品清單集;②確定測試終點和評價因子;③賦值計算;④根據計算結果對目標污染物進行排序或分級,取分值或級別較高的作為優先控制污染物。其中最關鍵的是評價因子的選擇和賦值計算。
2.2篩選體系關鍵技術
(1)評價因子
優先控制污染物篩選主要考慮化學品本身的毒性和環境暴露濃度,此外還要根據需要考慮其持久存在性和生物累積性,如半衰期(T1/2)、自然降解能力和生物富集系數(bioconcentration factor, BCF)。
毒性數據一般來自實驗室測定和數據庫查詢,根據“可靠性”和“相關性”原則進行選擇。傳統的生物毒性測試終點包括生存、生長和繁殖等,用半致死濃度(median lethal concentration, LC50)、半效應濃度(median effectl concentration, EC50)、最低觀察效應濃度(lowest observed effect concentration, LOEC)和無觀察效應濃度(no observed effect concentration, NOEC)等評價化學品對生物體暴露的危害。根據試驗暴露時間,分為急性毒性和慢性毒性,用急性毒性的數據來評價短期瞬時暴露效應,用慢性毒性數據評價長期持續暴露效應,如果慢性毒性數據缺乏也可以用急性毒性數據除以一個安全因子產生慢性基準值。由于急性毒性試驗周期短、成本低,目前關于PPCPs對區域水生態環境效應的報道多集中于水生生物的急性毒性[41-42]。
非傳統的測試終點包括內分泌干擾、酶活性的誘導/抑制效應、應激蛋白誘導效應,以及DNA和RNA水平的變化等。由于傳統的毒性測試方法耗時長、花費巨大,且因暴露劑量差異和動物種屬差異可能導致較大誤差,近年來國外將這些新的毒性測試方法用于化學品篩選,如高通量篩選技術(HTS)和有害結局路徑(AOP)[43-44]。HTS是以分子水平和細胞水平的實驗方法為基礎建立的藥物篩選技術體系,可以在同一時間內對數以千、萬計的樣品進行檢測[43];AOP是Ankley等[44]提出的一個概念框架,用以描述一個分子起始事件(MIE)與生物不同組織結構層次(細胞、器官、機體、群體)出現的毒性效應之間的相互聯系,從而進行危害度評定[45-46]。
環境暴露指污染物在環境中的濃度或某一特定受體的暴露劑量[47],一般用環境暴露濃度(environmental exposure concentration, EEC)來表示。在污染物篩選過程中,環境暴露濃度優先使用實測數據,當缺乏實測數據時,使用假設估算或模型預測的方法計算環境預測濃度(predicted environmental concentration, PEC)。PEC一般根據藥物的產量、排泄率和污水廠中藥物去除率進行估算[48],該方法簡單易行,但準確度較低。實測數據準確度高,更接近實際狀況,缺點是檢測費用高,而且有些情況下無法進行實測。隨著檢測技術的提高,實測數據的獲取越來越容易,例如,以多殘留檢測方法為基礎,Bruchet等[49]建立了內分泌干擾物和PPCPs篩選方法,鐘文玨等[50]建立了酚類化合物篩選方法。
(2) 計算方法
篩選體系的計算方法主要有疊置指數法和商值法,此外還有根據數學模型開發的篩選軟件,如RSEI[37]。
疊置指數法首先根據評價因子的數據范圍確定等級,對實際數據進行分級或賦分;然后根據評價因子的重要性確定其權重,最重要的因子指定最大的權;最后計算總分,總分越大風險越大。目前,各篩選體系尚未對評價因子形成統一的分級方式和賦值權重。例如,對于BCF的分級方式,SCRAM根據BCF的大小進行1~5分賦分[40],RICH將BCF分為高(≥5 000)、中(100~5 000)、低(<100)3個等級[51];對于評價因子的權重,SCRAM將所有評價因子的分數直接相加,得到綜合分數[52-55];王朋華等[48]認為藥物持久存在性( SP)和藥物毒性( SH)是較重要的因子,將其權重系數設為4,而藥物預測含量( SC)的權重系數設為2,總分 S = 2 SC+ 4 SP+ 4 SH。
商值法又稱比率法,是使用最普遍、最廣泛的風險表征方法。計算方法是將EEC(或PEC)與毒性指標值相比較,商值在某一數值范圍內為有風險,小于該數值則為無風險。歐洲獸藥分級方法將PEC與最低效應劑量(TDlow)相比,計算風險指數RI,然后把233種獸藥的風險分為高(RI>250)、中(50~250)、低(RI≤50)3個等級[39];Victoria等[56]根據PEC與EC50的對比,從65種抗癌藥物中篩選出15種比值大于1的優先控制藥物。
由于PPCPs具有較強的生物活性,部分PPCPs不僅對水生生物造成個體死亡,在低劑量長期污染下還有可能對其產生內分泌干擾效應和繁殖毒性效應,進而影響到整個水生生物種群的繁衍及變化[57-61]。美國加州政府環境健康危害評估委員會制定的安全飲用水和毒性強制執行法案(第65號提案)2014年公布的910種致癌或繁殖毒性化學品清單中,有303種具有繁殖毒性,其中65%以上是PPCPs。研究表明,人工合成雌激素在濃度僅為0.2 ng·L-1的低劑量下就會干擾魚類正常的內分泌,并引起雄性魚的卵黃蛋白原(vitellogenin, VTG)增加,出現明顯的雌性化[58];多環麝香對河蚌的生長和繁殖具有一定程度的抑制作用,并且還可通過江豚胎盤轉移至胎兒體內[59, 62];環境激素藥物來曲唑、它莫昔芬在低劑量下就能夠對青鳉魚的繁殖和早期發育產生明顯的影響[60-61]。Jin等[62]比較水生生物不同測試終點,包括生存、生長、生物化學和分子生物學、繁殖對NP的敏感性差異,結果表明,基于繁殖損傷的結果最為敏感,推導的預測無觀察效應濃度PNEC值最低(0.12 μg·L-1)。因此,以繁殖毒性數據為基礎進行篩選,將有助于進一步研究PPCPs對水生生物的繁殖損傷以及種群影響,為此類污染物的風險評估提供科學依據。
3.1篩查方法
根據是否考慮環境暴露濃度,篩選體系分為基于風險的(risk-based)篩選體系和基于危害性的(hazard-based)篩選體系。環境風險是污染物毒性和環境暴露的綜合作用結果,因此,繁殖毒性PPCPs篩選使用基于風險的篩選體系。由于PPCPs的BCF不大,除了布洛芬(14 000~49 000)、安定(1~64 700)和萘普生(500~2 300),其余均小于2 000[64-66],根據歐盟REACH法規對具有持久性、生物蓄積性和毒性的物質(PBTs)的鑒別判定標準[67],不屬于持久性污染物。因此,繁殖毒性PPCPs初步篩選可以借鑒基于風險的歐洲獸藥分級方法,以RI為依據對我國地表水檢出的PPCPs進行篩查,不考慮生物累積性和環境持久性等評價因子。
3.2受試物種
由于不同類群生物對不同化學物的毒性敏感性存在很大的差異,因此受試物種的選擇非常重要。關于PPCPs對水生生物毒性的報道很多,為了準確評價PPCPs對整個水生生態系統的影響,應針對不同種類的PPCPs選擇最敏感生物類群。研究發現,對于抗生素類藥物,藻類最敏感,其次是大型溞、魚類[68];對于激素類藥物,魚類比無脊椎動物更為敏感[69]。
為了使篩查結果具有可比性,同類PPCPs盡可能選擇同一敏感物種[70]。例如,當魚類為最敏感物種時,選擇國際通用模式魚類中的青鳉魚作為受試物種,該種魚已經被OECD認定為評價內分泌干擾類化合物的標準受試物種[71],具有非常豐富的毒性數據庫,可以保證數據的可靠性。當缺乏該受試物種毒性數據時,使用同一生物類群的物種,比如用斑馬魚或虹鱒魚替代青鳉魚。
3.3測試指標
傳統的繁殖毒性評價指標有多代效應、受精率、產卵量、孵化率和子代畸形率。另外,性腺指數(gonadosomatic index, GSI)和VTG水平也常作為生物標記物來評估污染物對魚類繁殖系統的潛在危害[72],但是對于這些標記物的使用需要防止假陰性現象[73](機能響應與生物標記物響應不相關)或假陽性現象[74](生物標記物響應未伴隨相應的機能響應)的出現。Alistair等[75]提出的20個關于PPCPs管理需要優先研究的重要問題之一,就是如何把組織和分子水平的毒性效應轉化成生存、生長和繁殖等傳統生物毒性測試終點。由于篩選水平的評價只是對風險進行比較粗略的估計,可以忽略各評價指標之間的區別,在US EPA的ECOTOX數據庫中選擇敏感物種長時間暴露條件下繁殖類指標的NOEC作為評價終點[70,75],當未搜索到NOEC時,用LOEC來替代。
表2PPCPs繁殖毒性篩查結果
Table 2Screening results and risk index of PPCPs with reproductive toxicity

化學品號CAS.No.化學品名稱Chemical環境濃度/(ng·L-1)EEC/(ng·L-1)受試物種Testspecies測試指標Measurement評估終點Endpoint濃度/(ng·L-1)Concentration/(ng·L-1)暴露時間/dDuration/dRI參考文獻Ref.57-63-6乙炔雌二醇Ethynylestradiol,EE23471.9[19]青鳉魚Oryziaslatipes雌性化FemaleLOEC0.03100115730[77]9016-45-9壬基酚Nonylphenol,NP179600[31]青鳉魚Oryziaslatipes卵黃蛋白原VTGLOEC100200~2301796[78]84-74-2鄰苯二甲酸二丁酯Dibutylphthalate,DBP5616800[30]九孔鮑Haliotisdiversicolorsupertexta胚胎發育embryoNOEC220004255.31[79]117-81-7鄰苯二甲酸二(2-乙基己基)酯Di(2-ethylhexyl)phthalate,DEHP1752650[30]九孔鮑Haliotisdiversicolorsupertexta胚胎發育EmbryoNOEC21000483.46[79]53-16-7雌酮Estrone,E1321.02[20]青鳉魚Oryziaslatipes雌性化FemaleNOEC811040.13[77]50-28-2雌二醇17β-estradiol,E2134[21]青鳉魚Oryziaslatipes卵黃蛋白原VTGLOEC5200~23026.8[78]84-66-2鄰苯二甲酸二乙酯Diethylphthalate,DEP381420[30]九孔鮑Haliotisdiversicolorsupertexta胚胎發育EmbryoNOEC20000419.07[79]15687-27-1布洛芬Ibuprofen,IBU1417[26]青鳉魚Oryziaslatipes孵化率HatchabilityNOEC10013214.17[80]58-22-0睪酮Testosterone,TTR3.2[81]靜水椎實螺Greatpondsnail產卵量EggNOEC0.32110.67[82]131-11-3鄰苯二甲酸二甲酯Dimethylphthalate,DMP173420[32]九孔鮑Haliotisdiversicolorsupertexta胚胎發育EmbryoNOEC2000048.67[79]117-84-0鄰苯二甲酸二正辛酯Di-n-octylphthalate,DOP114760[34]九孔鮑Haliotisdiversicolorsupertexta胚胎發育EmbryoNOEC2000045.74[79]70458-96-7諾氟沙星Norfloxacin,NFX6800[15]藍藻Blue-greenalgae生長GrowthNOEC160064.25[83]3380-34-5三氯生Triclosan,TCS1023[26]菲律賓蛤仔Ruditapesphilippinarum卵黃蛋白原VTGNOEC30073.41[84]15307-86-5雙氯芬酸Diclofenac,DIC843[28]虹鱒魚Rainbowtrout組織TissueLOEC460211.83[85]298-46-4卡馬西平Carbamazepine,CMP675[27]大型溞Daphniamagna繁殖ReproductionNOEC50061.35[86]50-27-1雌三醇Estriol,E394[23]青鳉魚Oryziaslatipes雌性化FemaleNOEC751101.25[77]
3.4篩查結果及分析
為了不漏掉任何有問題的化學品,篩選水平的評價結果通常比較保守[76],應以文獻報道中最大檢出濃度作為 EEC 。根據公式(1),計算得到RI,若比值大于1,說明風險較高,可能對水生生物產生潛在的繁殖損傷,比值越大毒性越高;若比值小于1,說明風險較小。
RI = EEC / NOEC
(1)
計算結果表明,有16種PPCPs的RI>1(見表2),包括1種抗生素,5種激素類藥物,3種其他藥物和7種PCPs。美國加州第65號提案清單將其中的EE2、DBP、DEHP和CMP標注為繁殖毒性化學品,E1、E2和睪酮為致癌化學品。
由表2可知,盡管抗生素類藥物在我國地表水檢出率較高,但由于其生物敏感性較低[68],在我國目前地表水污染水平下,只有NFX對藍藻生長產生抑制作用,對地表水生態環境影響不大。水生生物對激素類藥物的敏感性最高,EE2的LOEC值僅為0.03 ng·L-1[77],而我國地表水中最大濃度為3 471.9 ng·L-1[19],RI值為115 730,對青鳉魚的繁殖影響極大;睪酮對凈水椎實螺的產卵量NOEC值為0.3 ng·L-1[82],因此盡管地表水檢出濃度僅為3.2 ng·L-1[81],仍然具有一定的生態風險。3種其他藥物為IBU、DIC和CMP,其中IBU的RI較高(14.17),在一定程度上影響珠江中魚類的種群繁殖。PCPs中NP是典型的內分泌干擾物,暴露濃度為100 ng·L-1時就對青鳉魚的VTG產生影響[78],又由于其較高的檢出濃度,RI高達1 796,危害程度僅次于EE2;5種PAEs的NOEC值差別不大,對水生生物的影響程度主要取決于地表水殘留濃度,RI值范圍為5.74~255.31。綜上所述,激素類藥物的NOEC明顯較低,而PCPs的檢出濃度相對較高。因此,在目前我國地表水污染水平下,二者對水生態環境的風險最大。
(1) 國外對污染物篩查體系的研究已經相對成熟,并成功應用于實際工作中,而我國的污染物篩查方法比較簡單,對篩查體系研究較少,尤其缺乏對繁殖毒性及內分泌干擾物類污染物篩查體系的研究。因此,有必要建立完善符合我國區域特征的繁殖毒性PPCPs篩查體系,為PPCPs類污染物的生態風險評價提供科學基礎和技術支撐。
(2) 目前針對PPCPs的研究工作主要集中在測試其環境濃度水平與研究環境行為方面,關于其環境效應及生態風險的研究仍然處于起步階段,尤其是針對低劑量長期暴露下的繁殖毒性效應和種群動態變化。現有的PPCPs毒性數據來自國外毒性數據庫以及不同文獻,受試物種和實驗終值差別較大,因此,應通過不同營養級區域特征水生生物(魚,大型溞,浮游植物)的毒性表征,真實反映區域水環境中PPCPs的環境效應和生態風險。
(3) 針對PPCPs特別是具有繁殖毒性及內分泌干擾效應PPCPs污染物的風險管理,目前還沒有成熟的理論體系。近年來一些研究報道采用環境歸趨預測、PBT分數、Stockholm模型等方法進行PPCPs的危害評估和定性風險評估。總體來說,現有PPCPs的篩選以及評價的方法都是基于污染物本身的環境預測濃度或數據庫常規毒性作為依據,很少考慮到其對生物種群動態以及區域整體環境產生的危害及生態風險。如何科學地使用常規實驗數據以及這些非傳統的測試終點預測生物種群發生變化的無效應濃度水平,建立生物個體水平污染物劑量-效應關系和種群水平污染物劑量-效應關系,發展由個體水平定量評估到種群水平效應評價的生態風險評估方法需要我們進一步的研究。
通訊作者簡介:金小偉(1985―),男,博士,中國環境監測總站高級工程師,主要從事生態毒理以及生態風險評價的研究,已發表論文30余篇。
[1]胡洪營, 王超, 郭美婷. 藥品和個人護理用品(PPCPs)對環境的污染現狀與研究進展[J]. 生態環境, 2005, 14(6): 947-952
[2]Daughton C G, Ternes T A. Pharmaceuticals and personal care products in the environment: Agents of subtle change [J]. Environmental Health Perspectives, 1999, 107(6): 907-938
[3]安靖, 周啟星. 藥品及個人護理用品(PPCPs)的污染來源、環境殘留及生態毒[J]. 生態學雜志, 2009, 28(9): 1878-1890
An J, Zhou Q X. Pollution sources, environmental residues, and ecological toxicity of pharmaceuticals and personal care products (PPCPs): A review [J]. Chinese Journal of Ecology, 2009, 28(9): 1878-1890 (in Chinese)
[4]喻崢嶸. 東江下游某市飲用水中藥品和個人護理用品分布及凈化[D]. 北京: 清華大學, 2011: 1-2
Yu Z R. Distribution and purification of pharmaceutical and personal care products (PPCPs) in drinking water [D]. Beijing: Tsinghua University, 2011: 1-2 (in Chinese)
[5]Zhou H, Wu C, Huang X, et al. Occurrence of selected pharmaceuticals and caffeine in sewage treatment plants and receiving rivers in Beijing, China [J]. Water Environment Research, 2010, 82(11): 2239-2248
[6]China Industry Research Net (CIRN). Personal care product market development analysis [R]. China Industry Research Net, 2012
[7]Ternes T A, Meisenheimer M, McDowel D, et al. Removal of pharmaceuticals during drinking water treatment [J]. Environmental Science & Technology, 2002, 36: 3855-3863
[8]Sun J, Luo Q, Wang D H, et al. Occurrences of pharmaceuticals in drinking water sources of major river watersheds, China [J]. Ecotoxicology and Environmental Safety, 2015, 117: 132-140
[9]Santos L H, Araujo A N, Fachini A, et al. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment [J]. Journal of Hazardous Materials, 2010, 175(1-3): 45-95
[10]Sun L W, Zha J M, Spear P A, et al. Toxicity of the aromatase inhibitor letrozole to Japanese medaka ( Oryzias latipes ) eggs, larvae and breeding adults [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2007, 145(4): 533-541
[11]Sun L W, Zha J M, Spear P A, et al. Tamoxifen effects on the early life stages and reproduction of Japanese medaka ( Oryzias latipes ) [J]. Environmental Toxicology and Pharmacology, 2007, 24(1): 23-29
[12]王丹, 隋倩, 趙文濤, 等. 中國地表水環境中藥物和個人護理品的研究進展[J]. 科學通報, 2014, 59(9): 743-751
Wang D, Sui Q, Zhao W T, et al. Pharmaceutical and personal care products in the surface water of China: A review [J]. Chinese Science Bulletin, 2014, 59(9): 743-751 (in Chinese)
[13]Liu H, Zhang G P, Liu C Q, et al. The occurrence of chloramphenicol and tetracyclines in municipal sewage and the Nanming River, Guiyang city, China [J]. Journal of Environmental Monitoring, 2009, 11: 1199-1205
[14]Yang J F, Ying G G, Zhao J L, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China [J]. Environmental Science and Health, 2011, 46: 272-280
[15]Zou S, Xu W, Zhang R, et al. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities [J]. Environmental Pollution, 2011, 159: 2913-2920
[16]Luo Y, Xu L, Rysz M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe river basin, China [J]. Environmental Science & Technology, 2011, 45: 1827-1833
[17]Minh T B, Leung H W, Loi I H, et al. Richardson, antibiotics in the Hong Kong metropolitan area: Ubiquitous distribution and fate in Victoria Harbour [J]. Marine Pollution Bulletin, 2009, 58: 1052-1062
[18]Yang J F, Ying G G, Zhao J L, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China [J]. Journal of Environmental Science and Health, Part B, 2011, 46: 272-280
[19]高會, 那廣水, 方小丹, 等. 大連地區環境水體中六種雌激素的殘留特征及隨季節變化情況[J]. 環境化學, 2011, 30(12): 2041-2046
Gao H, Na G S, Fang X D, et al. Distribution and seasonal variation of six estrogens in environmental water of Dalian [J]. Environmental Chemistry, 2011, 30(12): 2041-2046 (in Chinese)
[20]Zhang X, Zhang D D, Zhang H, et al. Occurrence, distribution, and seasonal variation of estrogenic compounds and antibiotic residues in Jiulongjiang River, South China [J]. Environmental Science and Pollution Research, 2012, 19: 1392-1404
[21]Zhou X, Lian Z R, Wang J T, et al. Distribution of estrogens along Licun river in Qingdao China [J]. Procedia Environmental Sciences, 2011, 10: 1876-1880
[22]侯麗萍, 劉珊, 方展強, 等. 廣東四會鄧村河水體中雌/雄激素物質的含量及分布[J]. 農業環境科學學報, 2013, 32(1): 135-140
Hou L P, Liu S, Fang Z Q, et al. Concentrations and distribution of estrogenic and androgenic chemicals in water collected from Dengcun river, Sihui city, Guangdong province [J]. Journal of Agro-Environment Science, 2013, 32(1): 135-140 (in Chinese)
[23]譚麗超. 水環境中類固醇激素的污染特征及健康風險評價研究[D]. 南京: 南京農業大學, 2011: 49-59
Tan L C. Environmental pollution investigations and environmental risk assessment studies of steroid hormones [D]. Nanjing: Nanjing Agricultural University, 2011: 49-58 (in Chinese)
[24]Zhao J L, Ying G G, Liu Y S, et al. Occurrence and a screening-level risk assessment of human pharmaceuticals in the Pearl River system, South China [J]. Environmental Toxicology and Chemistry, 2010, 29: 1377-1384
[25]Yu Y, Huang Q, Wang Z, et al. Occurrence and behavior of pharmaceuticals, steroid hormones, and endocrine-disrupting personal care products in wastewater and the recipient river water of the Pearl River Delta, South China [J]. Journal of Environmental Monitoring, 2011, 13: 871-878
[26]Peng X, Yu Y, Tang C, et al. Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban river water of the Pearl River Delta, South China [J]. Science of the Total Environment, 2008, 397: 158-166
[27]Zhou X F, Dai C M, Zhang Y L, et al. A preliminary study on the occurrence and behavior of carbamazepine (CBZ) in aquatic environment of Yangtze River Delta, China [J]. Environmental Monitoring and Assessment, 2011, 173: 45-53
[28]Yang Y, Fu J, Peng H, et al. Occurrence and phase distribution of selected pharmaceuticals in the Yangtze Estuary and its coastal zone [J]. Journal of Hazardous Materials, 2011, 190: 588-596
[29]王丹, 隋倩, 呂樹光, 等. 黃浦江流域典型藥物和個人護理品的含量及分布特征[J]. 中國環境科學, 2014, 34(7): 1897-1904
Wang D, Sui Q, Lv S G, et al. Concentrations and distribution of selected pharmaceuticals and personal care products in Huangpu River [J]. China Environmental Science, 2014, 34(7): 1897-1904 (in Chinese)
[30]陸繼龍, 郝立波, 王春珍, 等. 第二松花江中下游水體鄰苯二甲酸酯分布特征[J]. 環境科學與技術, 2007, 21(30): 35-38
[31]Fang X Y, Ying X, Gerd P, et al. Nonylphenol, bisphenol-A and DDTs in lake Donghu, China [J]. Fresenius Environmental Bulletin, 2005, 14(3): 173-180
[32]Shen Y Y, Xu Q, Yin X Y, et al. Determination and distribution features of phthalate esters in Xuanwu Lake [J]. Journal of Southeast University: Natural Science Edition, 2010, 40(6): 1337-1341
[33]Hu Z, Shi Y, Cai Y, et al. Concentrations, distribution, and bioaccumulation of synthetic musks in the Haihe River of China [J]. Chemosphere, 2011, 84: 1630-1635
[34]王軍良, 徐超, 莊曉偉, 等. 水中鄰苯二甲酸酯污染現狀及高級氧化降解技術研究[J]. 工業水處理, 2011, 31(4): 5-13
[35]王春, 李曉東, 史玉坤, 等. 南通市地表水中鄰苯二甲酸酯類污染狀況研究[J]. 南通大學學報(醫學版), 2007, 27(3): 167-170
Wang C, Li X D, Shi Y K, et al. Study on pollution condition of phthalate esters in surface water in Nantong city [J]. Jouna1 of Nantong University (Medical Sciences), 2007, 27(3): 167-170 (in Chinese)
[36]Capleton A C, Courage C, Rumsby P, et al. Prioritising veterinary medicines according to their potential indirect human exposure and toxicity profile [J]. Toxicology Letters, 2006, 163(3): 213- 2231
[37]Bu Q W, Wang D H, Wang Z J. Review of screening systems for prioritizing chemical substances [J]. Critical Reviews in Environmental Science and Technology, 2013, 43(10): 1011-1041
[38]Hansen B G,Haelst A G, Leeuwen K, et al. Priority setting for existing chemicals: European Union risk ranking method [J]. Environmental Toxicology and Chemistry, 1999, 18: 772-779
[39]Kools S A E, Boxall A B A, Moltmann J F, et al. A ranking of European veterinary medicines based on environmental risks [J]. Integrated Environmental Assessment and Management, 2008, 4(4): 399-408
[40]Mitchell R R, Summer C L, Blonde S A, et al. SCRAM: A scoring and ranking system for persistent, bioaccumulative, and toxic substances for the North American Great Lakes: Resulting chemical scores and rankings [J]. Human and Ecological Risk Assessment, 2002, 8: 530-537
[41]Nassef M, Matsumoto S, Seki M, et al. Acute effects of triclosan, diclofenac and carbamazepine on feeding performance of Japanese medaka fish ( Oryzias latipes ) [J]. Chemosphere, 2010, 80(9): 1095-1100
[42]Kim J W, Ishibashi H, Yamauchi R, et al. Acute toxicity of pharmaceutical and personal care products on freshwater crustacean ( Thamnocephalus platyurus ) and fish ( Oryzias latipes ) [J]. Toxicological Sciences, 2009, 34(2): 227-232
[43]Ivanov I, Schaab C, Planitzer S, et al. DNA microarray technology and antimicrobial drug discovery [J]. Pharmacogenomics, 2000, 1(2): 169 -178
[44]Ankley G T, Bennett R S, Erickson R J, et al. Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment [J]. Environmental Toxicology and Chemistry, 2010, 29: 730-741
[45]Caldwell D J, Mastrocco F. An integrated approach for prioritizing pharmaceuticals found in the environment for risk assessment, monitoring and advanced research [J]. Chemosphere, 2014, 115: 4-12
[46]彭雙清. 危險度評定中AOP的概念以及關于其中文譯名的思考[J]. 中國藥理學與毒理學雜志, 2013, 27(1): 305
[47]Arnot J, Mackay D. Policies for chemical hazard and risk priority setting: Can persistence, bioaccumulation, toxicity, and quantity information be combined [J]. Environment Science and &Technology, 2008, 42(13): 4648-4654
[48]王朋華, 袁濤, 李榮, 等. 水環境中優先控制藥物篩選體系的建立與應用[J]. 中國環境監測, 2008, 24(4): 7-13
Wang P H, Yuan T, Li R, et al. Screening the priority control pharmaceuticals in the aquatic environment [J]. Environment and Monitoring in China, 2008, 24(4): 7-13 (in Chinese)
[49]Bruchet A, Prompsy C, Filippi G, et al. A broad spectrum analytical scheme for the screening of endocrine disruptors (EDs), pharmaceuticals and personal care products in wastewaters and natural waters [J]. Water Science and Technology, 2002, 46: 86-97
[50]Zhong W, Wang D, Xu X, et al. Screening level ecological risk assessment for phenols in surface water of the Taihu lake [J]. Chemosphere, 2010, 80 (9): 998-1005
[51]Baun A, Eriksson E, Ledin A, et al. A methodology for ranking and hazard identification of xenobiotic organic compounds in urban stormwater [J]. Science of the Total Environment, 2006, 370(1): 29-38
[52]Snyder E, Snyder S,Giesy J, et al. SCRAM: A scoring and ranking system for persistent, bioaccumulative, and toxic substances for the North American great lakes. Part I: Structure of the scoring and ranking system [J]. Environmental Science and Pollution Research, 2000, 7(1): 52-61
[53]Snyder E, Snyder S,Giesy J, et al. SCRAM: A scoring and ranking system for persistent, bioaccumulative, and toxic substances for the North American Great Lakes. Part II: Bioaccumulation potential and persistence [J]. Environmental Science and Pollution Research, 2000, 7(2): 116-121
[54]Snyder E, Snyder S,Giesy J, et al. SCRAM: A scoring and ranking system for persistent, bioaccumulative, and toxic substances for the North American Great Lakes. Part III: Acute and subchronic or chronic toxicity [J]. Environmental Science and Pollution Research, 2000, 7(3): 176-184
[55]Snyder E, Snyder S,Giesy J, et al. SCRAM: A scoring and ranking system for persistent, bioaccumulative, and toxic substances for the North American Great Lakes. Part IV: Results from representative chemicals, sensitivity analysis, and discriminatory power [J]. Environmental Science and Pollution Research, 2000, 7(4): 220-224
[56]Victoria B, Crispin H, Neville L, et al. Prioritising anticancer drugs for environmental monitoring and risk assessment purposes [J]. Science of the Total Environment, 2014, 3: 159-170
[57]Ishibashi H, Matsumura N, Hirano M, et al.Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin [J]. Aquatic Toxicology, 2004, 67(2): 167-179
[58]Zha J M, Sun L W, Spear P A, et al. Comparison of ethinylestradiol and nonylphenol effects on reproduction of Chinese rare minnows ( Gobiocypris rarus ) [J]. Ecotoxicology and Environmental Safety, 2008, 71(2) : 390-399
[59]Gooding M P, Newton T J, Bartsch M R, et al. Toxicity of synthetic musks to early life stages of the freshwater mussel Lampsilis cardium [J]. Archives of Environmental Contamination and Toxicology, 2006, 51(4): 549-558
[60]United States Environmental Protection Agency (US EPA). National recommended water quality criteria [S]. Washington DC: US EPA, 2006
[61]Ackermann G E, Schwaiger J, Negele R D, et al. Effects of long-term nonylphenol exposure on gonadal development and biomarkers of estrogenicity in juvenile rainbow trout ( Oncorhynchus mykiss ) [J]. Aquatic Toxicology, 2002, 60(3): 203-221
[62]Jin X W, Wang Y Y, Jin W, et al. Ecological risk of nonylphenol in China surface waters based on reproductive fitness [J]. Environmental Science & Technology, 2014, 48: 1256-1262
[63]Nakma H. Occurrence of synthetic musk fragrances in marine mammals and sharks from Japanese coastal waters [J]. Environmental Science & Technology, 2005, 39(10): 3430-3434
[64]Brozinski J M, Lahti M, Oikari A, et al. Identification and dose dependency of ibuprofen biliary metabolites in rainbow trout [J]. Chemosphere, 2013, 93: 1789-1795
[65]Maruya K A, Vidal D E, Bay S M, et al. Organic contaminants of emerging concern in sediments and flatfish collected near outfalls discharging treated wastewater effluent to the southern California Bight [J]. Environmental Toxicology and Chemistry, 2012, 31: 2683-2688
[66]Brozinski J M, Lahti M, Oikari A, et al. Detection of naproxen and its metabolites in fish bile following intraperitoneal and aqueous exposure [J]. Environmental Science and Pollution Research International, 2011, 18: 811-818
[67]REACH法規對CMR/PBT物質的控制與企業應對策略[OL]. http://reach.Chem info.gov. cn/hottopic/show.aspx?xh= 566
[68]Ji K, Kim S, Han S, et al. Risk assessment of chlortetracycline,oxytetracycline, sulfamethazine, sulfathiazole, and erythromycin in aquatic environment: Are the current environmental concentrations safe? [J]. Ecotoxicology, 2012, 21(7): 2031-2050
[69]Segner H, Navas J, Schfers C, et al. Potencies of estrogenic compounds in in vitro screening assays and in life cycle tests with zebrafish in vivo [J]. Ecotoxicology and Environmental Safety, 2003, 54(3): 315-322
[70]金小偉, 王業耀, 王子健, 等. 淡水水生態基準方法學研究: 繁殖/生殖毒性類化合物水生態基準探討[J]. 生態毒理學報, 2015, 10(1): 31-39
Jin X W, Wang Y Y, Wang Z J, et al. Methodologies for deriving aquatic life criteria (ACL): Discussion of ACL for chemicals causing reproductive toxicity [J]. Asian Joumal of Ecoloxicology, 2015, 10(1): 31-39 (in Chinese)
[71]Ankley G T, Johnson R D. Small fish models for identifying and assessing the effects of endocrine-disrupting chemicals [J]. Ilar Journal,2004, 45(4): 469-483
[72]Bosker T, Munkiitrick K R, Maclatchy D L. Challenges and opportunities with the use of biomarkers to predict reproductive impairment in fishes exposed to endocrine disrupting substances [J]. Aquatic Toxicology, 2010, 100(1): 9-16
[73]Hutchinson T H, Ankley G T, Segner H, et al. Screening and testing for endocrine disruption in fish-biomarkers as “signposts”, not “traffic lights” in risk assessment [J]. Environmental Health Perspectives, 2006, 114: 106-114
[74]Hartung T. Toxicology for the twenty-first century [J]. Nature, 2009, 460(7252): 208-212
[75]Jin X, Wang Y, Jin W, et al. Ecological risk of nonylphenol in China surface waters based on reproductive fitness [J]. Environmental Science & Technology, 2014, 48(2): 1256-1262
[76]周軍英, 程燕. 農藥生態風險評價研究進展[J]. 生態與農村環境學報, 2009, 25(4): 95-99
Zhou J Y, Cheng Y. Advancement in the study of pesticides ecological risk assessment [J]. Journal of Ecology and Rural Environment, 2009, 25(4): 95-99 (in Chinese)
[77]Metcalfe C D, Metcalfe T L, Kiparissis Y, et al. Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka ( Oryzias latipes ) [J]. Environmental Toxicology and Chemistry, 2001, 20(2): 297-308
[78]Tabata A, Kashiwada S, Ohnishi Y, et al. Estrogenic influences of estradiol-17beta, p-nonylphenol and bis-phenol-A on Japanese medaka ( Oryzias latipes ) at detected environmental concentrations [J]. Water Science and Technology, 2001, 43(2): 109-116
[79]Liu Y, Guan Y, Yang Z, et al.Toxicity of seven phthalate esters to embryonic development of the abalone Haliotis diversicolor supertexta [J]. Ecotoxicology, 2009, 18(3): 293-303
[80]Han S, Choi K, Kim J, et al. Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka ( Oryzias latipes ) and freshwater cladocerans Daphnia magna and Moina macrocopa [J]. Aquatic Toxicology, 2010, 98(3): 256-264
[81]王玲. 環境中類固醇類內分泌干擾物的檢測技術及其降解行為研究[D]. 濟南: 山東大學, 2007: 68
Wang L. Studies on the new analytical technology for steroids and its degradation behavior in the environment [D]. Jinan: Shandong University, 2007: 68 (in Chinese)
[82]Giusti A, Ducrot V, Joaquim-Justo C. Testosterone levels and fecundity in the hermaphroditic aquatic snail Lymnaea stagnalis exposed to testosterone and endocrine disruptors [J]. Environmental Toxicology and Chemistry, 2013, 32(8): 1740-1745
[83]Ando T, Nagase H, Eguchi K. A novel method using cyanobacteria for ecotoxicity test of veterinary antimicrobial agents [J]. Environmental Toxicology and Chemistry, 2007, 26(4): 601-606
[84]Matozzo V, Formenti A, Donadello G. A multi-biomarker approach to assess effects of triclosan in the clam Ruditapes philippinarum [J]. Marine Environmental Research, 2012, 74: 40-46
[85]Mehinto A C, Hill E M, Tyler C R. Uptake and biological effects of environmentally relevant concentrations of the nonsteroidal anti-inflammatory pharmaceutical diclofenac in rainbow trout ( Oncorhynchus mykiss ) [J]. Environmental Science & Technology, 2010, 44(6): 2176-2182
[86]Dietrich S, Ploessl F, Bracher F. Single and combined toxicity of pharmaceuticals at environmentally relevant concentrations in Daphnia magna - A multigenerational study [J]. Chemosphere, 2010, 79(1): 60-66
◆
Pharmaceuticals and Personal Care Products (PPCPs) Caused Reproductive Toxicity in Surface Water of China: A Review
Liu Na1, Jin Xiaowei2, *, Wang Yeyao1, 2, Lv Yibing2, Yang Qi1
1. School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China 2. China National Environmental Monitoring Center, Beijing100012, China
23 March 2015accepted 10 June 2015
It was reported that 144 pharmaceuticals and personal care products (PPCPs) have been detected in Chinese surface waters, including hormones, antibiotics, other pharmaceuticals and personal care products (PCPs).The highest exposure concentration which can be detected even reached at μ g·L-1level, which may lead to endocrine disruption or reproductive toxicity, and then affect the population dynamics of aquatic organisms. In present study, the potential ecological risks of PPCPs were screened and ranked using risk index (RI) methods based on reproductive fitness in Chinese surface water. The result showed that 16 kinds of PPCPs have a high risk which with RI>1 in Chinese surface waters, including 5 hormones, 1 antibiotic, 3 other drugs and 7 PCPs, in which ethinylestradiol (EE2) with the highest RI of 115 730, followed by nonylphenol (NP) with RI of 1 796, and dibutyl phthalate (DBP) with RI of 255.31. High tiered ecological risk assessments are needed to get further evaluation for those PPCPs.
PPCPs; screening system; reproductive toxicity; Chinese surface waters
國家自然科學青年基金(21307165);國家水體污染控制與治理科技重大專項(2013ZX07502001);環境模擬與污染控制國家重點聯合實驗室(中國科學院生態環境研究中心)開放基金(14K02ESPCR)
劉娜 (1985-),女,博士研究生,研究方向為生態毒理及風險評價研究,E-mail:liuna_1231@163.com
Corresponding author), E-mail: jxw85@126.com
10.7524/AJE.1673-5897.20150323014
2015-03-23錄用日期:2015-06-10
1673-5897(2015)6-001-12
X171.5
A
劉娜, 金小偉, 王業耀, 等. 我國地表水中藥物與個人護理品污染現狀及其繁殖毒性篩查[J]. 生態毒理學報,2015, 10(6): 1-12
Liu N, Jin X W, Wang Y Y, et al. Pharmaceuticals and personal care products (PPCPS) caused reproductive toxicity in surface water of China: A review [J]. Asian Journal of Ecotoxicology, 2015, 10(6): 1-12 (in Chinese)