999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

向量優化中(C,ε)-真解的一個非線性標量化特征

2015-10-18 00:46:58夏遠梅林安趙克全
純粹數學與應用數學 2015年5期
關鍵詞:定義概念特征

夏遠梅,林安,趙克全

(重慶師范大學數學學院,重慶401331)

向量優化中(C,ε)-真解的一個非線性標量化特征

夏遠梅,林安,趙克全

(重慶師范大學數學學院,重慶401331)

利用一類Minkowski型非線性標量化泛函及相應的分離定理給出了向量優化問題(C,ε)-真解的一個新的非線性標量化特征.此外,給出了一些例子對主要結果進行了解釋.

向量優化;(C,ε)-真解;非線性標量化

1 引言

近年來,近似解在向量優化領域中扮演了十分重要的作用.到目前為止,一些學者已經通過不同方式,借助不同工具提出了向量優化問題的各種不同類型的近似解概念.特別地,文獻[1-2]利用co-radiant集引入了ε-有效解,這類新的近似有效解概念包含了許多近似解作為其特例.文獻[3]通過co-radiant集提出了一類新的近似真有效解概念-ε-真有效解,并獲得了這類近似真有效性的一些性質.在文獻[3]的基礎上,文獻[4]提出了一類新的(C,ε)-真有效解概念,指出在一定條件下這兩類近似真有效解概念是等價的,并給出了(C,ε)-真有效解的一些線性標量化特征.此外,利用一些非線性標量化泛函及其相應的分離定理,一些學者也已經研究了向量優化問題各類解的非線性標量化特征(見文獻[5-8]).

受文獻[3-4,6]中研究工作的啟發,本文利用Minkowski型非線性標量化泛函給出了向量優化問題(C,ε)-真解的一個新特征并給出了一些具體例子對主要結果進行了解釋.

2 預備知識

假定X是實線性空間,Y是實Hausdorff拓撲線性空間,Rn是n維歐幾里得空間.對于非空集合A?Y,用int A,cl A,bd A和YA分別表示A的拓撲內部、拓撲閉包、拓撲邊界和補集.A的生成錐定義為如果A滿足對任意的d∈A和α>1,αd∈A,則稱A是co-radiant集.此外,如果A∩(-A)?{0},則稱A是點的;如果int A≠?,則稱A是solid的;如果A≠?且A≠Y,則稱A是真的.設C?Y是真點solid co-radiant集.定義

引理2.1[12]設C是solid凸集.則

(i)C(0)+C(ε)?C(ε),?ε≥0;

(ii)C(0)是solid凸錐;

(iii)int(cl C(ε))=int C(ε),?ε>0.

本文考慮下面的向量優化問題:

其中,f:X→Y,S?X且S≠?.基于真點錐D?Y定義的Y中的偏序“≤”為:

定義2.1[12]設ε≥0.可行點稱為問題(VP)的弱C(ε)-有效解,如果

問題(VP)的弱C(ε)-有效解全體記為WAE(f,C,ε).

定義2.2[34]設ε≥0.可行點稱為問題(VP)的(C,ε)-真解,如果

問題(VP)的(C,ε)-真解全體記為PAE(f,C,ε).

本文將用到文獻[6]中提出的Minkowski型非線性標量化泛函φq,G:Y→R∪{±∞}:φq,G(y)=inf{s∈R|y∈sq-G},其中?≠G?Y,y∈Y且q∈Y.約定inf?=+∞.根據文獻[3]中的引理4.2,下面的分離定理是顯然的.

引理2.2設C是真閉solid凸集且q∈int C.則對任意ε>0,φq,C(ε)(y)連續且滿足:

3 (C,ε)-真解的一個非線性標量化特征

本節首先給出一些例子表明文獻[3]中建立的(C,ε)-真解的非線性標量化定理的逆不一定成立.進而提出問題(VP)的(C,ε)-真解的兩個新的非線性標量化特征.

文獻[3]中建立了下面的非線性標量化定理.

定理3.1設C是真閉solid凸集,0?C,q∈int C且ε>0.則

下面建立向量優化問題(VP)的(C,ε)-真解的兩個新的非線性標量化特征.

定理3.2設C是真solid凸集且q∈int C,ε≥0,β=inf{c∈R+|cq∈cl C(ε)}.則

定理3.3設C是真solid凸集且q∈int C,ε≥0,β=inf{c∈R+|cq∈cl C(ε)}.如果C(0)是開集,則

[1]Gutiérrez C,Jiménez B,Novo V.A unified approach and optimality conditions for approximate solutions of vector optimization problems[J].SIAM Journal on Optimization,2006,17(3):688-710.

[2]Gutiérrez C,Jiménez B,Novo V.On approximate efficiency in multiobjective programming[J].Mathematical Methods of Operations Research,2006,64(1):165-185.

[3]Gao Ying,Yang Xinmin,Teo K L.Optimality conditions for approximate solutions of vector optimization problems[J].Journal of Industrial and Management Optimization,2011,7(2):483-496.

[4]Gutiérrez C,Huerga L,Novo V.Scalarization and saddle points of approximate proper solutions in nearly subconvexlike vector optimization problems[J].Journal of Mathematical Analysis and Applications,2012,389(2):1046-1058.

[5]Zaffaroni A.Degrees of efficiency and degrees of minimality[J].SIAM Journal on Control and Optimization,2003,42(3):1071-1086.

[6]G?pfert A,Tammer C,Riahi H,Z?linescu C.Variational Methods in Partially Ordered Spaces[M].New York:Springer-verlag,2003.

[7]Tammer C,Z?linescu C.Lipschitz properties of the scalarization function and applications[J].Optimization,2010,59(2):305-319.

[8]Flores-Bazán F,Hernández E.A unified vector optimization problem:complete scalarizations and applications[J].Optimization,2011,60(12):1399-1419.

A nonlinear scalarization characterization of(C,ε)-proper solutions in vector optimization

Xia Yuanmei,Lin An,Zhao Kequan

(College of Mathematics Science,Chongqing Normal University,Chongqing 401331,China)

In this paper,a new nonlinear scalarization characterization of(C,ε)-proper solutions is obtained by means of a kind of Minkowski-type nonlinear scalarization functionals and the corresponding separation theorem for vector optimization problems.Some examples are given to illustrate the main results.

vector optimization,(C,ε)-proper solutions,nonlinear scalarization

O221.6

A

1008-5513(2015)05-0503-06

10.3969/j.issn.1008-5513.2015.05.010

2014-12-08.

國家自然科學基金(11301574,11271391);第二批重慶市高等學校青年骨干教師資助計劃.

夏遠梅(1990-),碩士生,研究方向:向量優化理論及應用.

2010 MSC:90C29,90C30,90C46

猜你喜歡
定義概念特征
Birdie Cup Coffee豐盛里概念店
現代裝飾(2022年1期)2022-04-19 13:47:32
幾樣概念店
現代裝飾(2020年2期)2020-03-03 13:37:44
如何表達“特征”
不忠誠的四個特征
當代陜西(2019年10期)2019-06-03 10:12:04
學習集合概念『四步走』
聚焦集合的概念及應用
抓住特征巧觀察
成功的定義
山東青年(2016年1期)2016-02-28 14:25:25
線性代數的應用特征
河南科技(2014年23期)2014-02-27 14:19:15
修辭學的重大定義
當代修辭學(2014年3期)2014-01-21 02:30:44
主站蜘蛛池模板: 国产精品久线在线观看| 最新午夜男女福利片视频| 欧美日韩午夜| 五月天丁香婷婷综合久久| 超清无码熟妇人妻AV在线绿巨人| 4虎影视国产在线观看精品| 中文字幕天无码久久精品视频免费| 欧美 亚洲 日韩 国产| 无码一区二区三区视频在线播放| Aⅴ无码专区在线观看| 欧美日韩在线国产| 亚洲综合片| 国产精品.com| 久久婷婷综合色一区二区| 亚洲有无码中文网| 亚洲精选高清无码| 日韩 欧美 小说 综合网 另类| 国产高清在线精品一区二区三区| 毛片国产精品完整版| 免费aa毛片| 无码高潮喷水专区久久| 日韩精品一区二区三区中文无码| 亚洲69视频| 99热这里只有免费国产精品| 丁香亚洲综合五月天婷婷| 999精品在线视频| 麻豆精品视频在线原创| 日本黄网在线观看| 一级福利视频| 欧美中文字幕无线码视频| 国产乱子伦无码精品小说| 亚洲精品制服丝袜二区| 亚洲男人在线| 亚洲人成影院在线观看| 国产精品永久久久久| 亚洲综合激情另类专区| 免费在线色| 一区二区影院| 色香蕉影院| 91网红精品在线观看| AV不卡无码免费一区二区三区| 啊嗯不日本网站| 囯产av无码片毛片一级| 亚洲人成网18禁| 亚洲中文久久精品无玛 | 欧美一级在线看| 华人在线亚洲欧美精品| 亚洲欧美另类中文字幕| 国产成人免费高清AⅤ| 欧洲一区二区三区无码| 波多野结衣在线se| 国产成人91精品| 欧美在线精品怡红院| 亚洲成人免费看| 无码内射中文字幕岛国片| 国产成人亚洲综合a∨婷婷| 国产女人喷水视频| 特级精品毛片免费观看| 日韩视频免费| 国产网友愉拍精品| 国产91色在线| 精品国产免费人成在线观看| 中文字幕自拍偷拍| AV无码无在线观看免费| 国产美女无遮挡免费视频网站| www中文字幕在线观看| 国产成人综合在线观看| 国产精品xxx| 风韵丰满熟妇啪啪区老熟熟女| 精品久久久久久成人AV| 四虎精品黑人视频| 精品一区二区三区自慰喷水| 亚洲欧美日本国产综合在线| 青草娱乐极品免费视频| 亚洲中文字幕23页在线| 免费在线成人网| 免费看黄片一区二区三区| 国产欧美视频一区二区三区| av天堂最新版在线| 精品国产亚洲人成在线| 99国产精品一区二区| 国内毛片视频|