999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

向量優化中(C,ε)-真解的一個非線性標量化特征

2015-10-18 00:46:58夏遠梅林安趙克全
純粹數學與應用數學 2015年5期
關鍵詞:定義概念特征

夏遠梅,林安,趙克全

(重慶師范大學數學學院,重慶401331)

向量優化中(C,ε)-真解的一個非線性標量化特征

夏遠梅,林安,趙克全

(重慶師范大學數學學院,重慶401331)

利用一類Minkowski型非線性標量化泛函及相應的分離定理給出了向量優化問題(C,ε)-真解的一個新的非線性標量化特征.此外,給出了一些例子對主要結果進行了解釋.

向量優化;(C,ε)-真解;非線性標量化

1 引言

近年來,近似解在向量優化領域中扮演了十分重要的作用.到目前為止,一些學者已經通過不同方式,借助不同工具提出了向量優化問題的各種不同類型的近似解概念.特別地,文獻[1-2]利用co-radiant集引入了ε-有效解,這類新的近似有效解概念包含了許多近似解作為其特例.文獻[3]通過co-radiant集提出了一類新的近似真有效解概念-ε-真有效解,并獲得了這類近似真有效性的一些性質.在文獻[3]的基礎上,文獻[4]提出了一類新的(C,ε)-真有效解概念,指出在一定條件下這兩類近似真有效解概念是等價的,并給出了(C,ε)-真有效解的一些線性標量化特征.此外,利用一些非線性標量化泛函及其相應的分離定理,一些學者也已經研究了向量優化問題各類解的非線性標量化特征(見文獻[5-8]).

受文獻[3-4,6]中研究工作的啟發,本文利用Minkowski型非線性標量化泛函給出了向量優化問題(C,ε)-真解的一個新特征并給出了一些具體例子對主要結果進行了解釋.

2 預備知識

假定X是實線性空間,Y是實Hausdorff拓撲線性空間,Rn是n維歐幾里得空間.對于非空集合A?Y,用int A,cl A,bd A和YA分別表示A的拓撲內部、拓撲閉包、拓撲邊界和補集.A的生成錐定義為如果A滿足對任意的d∈A和α>1,αd∈A,則稱A是co-radiant集.此外,如果A∩(-A)?{0},則稱A是點的;如果int A≠?,則稱A是solid的;如果A≠?且A≠Y,則稱A是真的.設C?Y是真點solid co-radiant集.定義

引理2.1[12]設C是solid凸集.則

(i)C(0)+C(ε)?C(ε),?ε≥0;

(ii)C(0)是solid凸錐;

(iii)int(cl C(ε))=int C(ε),?ε>0.

本文考慮下面的向量優化問題:

其中,f:X→Y,S?X且S≠?.基于真點錐D?Y定義的Y中的偏序“≤”為:

定義2.1[12]設ε≥0.可行點稱為問題(VP)的弱C(ε)-有效解,如果

問題(VP)的弱C(ε)-有效解全體記為WAE(f,C,ε).

定義2.2[34]設ε≥0.可行點稱為問題(VP)的(C,ε)-真解,如果

問題(VP)的(C,ε)-真解全體記為PAE(f,C,ε).

本文將用到文獻[6]中提出的Minkowski型非線性標量化泛函φq,G:Y→R∪{±∞}:φq,G(y)=inf{s∈R|y∈sq-G},其中?≠G?Y,y∈Y且q∈Y.約定inf?=+∞.根據文獻[3]中的引理4.2,下面的分離定理是顯然的.

引理2.2設C是真閉solid凸集且q∈int C.則對任意ε>0,φq,C(ε)(y)連續且滿足:

3 (C,ε)-真解的一個非線性標量化特征

本節首先給出一些例子表明文獻[3]中建立的(C,ε)-真解的非線性標量化定理的逆不一定成立.進而提出問題(VP)的(C,ε)-真解的兩個新的非線性標量化特征.

文獻[3]中建立了下面的非線性標量化定理.

定理3.1設C是真閉solid凸集,0?C,q∈int C且ε>0.則

下面建立向量優化問題(VP)的(C,ε)-真解的兩個新的非線性標量化特征.

定理3.2設C是真solid凸集且q∈int C,ε≥0,β=inf{c∈R+|cq∈cl C(ε)}.則

定理3.3設C是真solid凸集且q∈int C,ε≥0,β=inf{c∈R+|cq∈cl C(ε)}.如果C(0)是開集,則

[1]Gutiérrez C,Jiménez B,Novo V.A unified approach and optimality conditions for approximate solutions of vector optimization problems[J].SIAM Journal on Optimization,2006,17(3):688-710.

[2]Gutiérrez C,Jiménez B,Novo V.On approximate efficiency in multiobjective programming[J].Mathematical Methods of Operations Research,2006,64(1):165-185.

[3]Gao Ying,Yang Xinmin,Teo K L.Optimality conditions for approximate solutions of vector optimization problems[J].Journal of Industrial and Management Optimization,2011,7(2):483-496.

[4]Gutiérrez C,Huerga L,Novo V.Scalarization and saddle points of approximate proper solutions in nearly subconvexlike vector optimization problems[J].Journal of Mathematical Analysis and Applications,2012,389(2):1046-1058.

[5]Zaffaroni A.Degrees of efficiency and degrees of minimality[J].SIAM Journal on Control and Optimization,2003,42(3):1071-1086.

[6]G?pfert A,Tammer C,Riahi H,Z?linescu C.Variational Methods in Partially Ordered Spaces[M].New York:Springer-verlag,2003.

[7]Tammer C,Z?linescu C.Lipschitz properties of the scalarization function and applications[J].Optimization,2010,59(2):305-319.

[8]Flores-Bazán F,Hernández E.A unified vector optimization problem:complete scalarizations and applications[J].Optimization,2011,60(12):1399-1419.

A nonlinear scalarization characterization of(C,ε)-proper solutions in vector optimization

Xia Yuanmei,Lin An,Zhao Kequan

(College of Mathematics Science,Chongqing Normal University,Chongqing 401331,China)

In this paper,a new nonlinear scalarization characterization of(C,ε)-proper solutions is obtained by means of a kind of Minkowski-type nonlinear scalarization functionals and the corresponding separation theorem for vector optimization problems.Some examples are given to illustrate the main results.

vector optimization,(C,ε)-proper solutions,nonlinear scalarization

O221.6

A

1008-5513(2015)05-0503-06

10.3969/j.issn.1008-5513.2015.05.010

2014-12-08.

國家自然科學基金(11301574,11271391);第二批重慶市高等學校青年骨干教師資助計劃.

夏遠梅(1990-),碩士生,研究方向:向量優化理論及應用.

2010 MSC:90C29,90C30,90C46

猜你喜歡
定義概念特征
Birdie Cup Coffee豐盛里概念店
現代裝飾(2022年1期)2022-04-19 13:47:32
幾樣概念店
現代裝飾(2020年2期)2020-03-03 13:37:44
如何表達“特征”
不忠誠的四個特征
當代陜西(2019年10期)2019-06-03 10:12:04
學習集合概念『四步走』
聚焦集合的概念及應用
抓住特征巧觀察
成功的定義
山東青年(2016年1期)2016-02-28 14:25:25
線性代數的應用特征
河南科技(2014年23期)2014-02-27 14:19:15
修辭學的重大定義
當代修辭學(2014年3期)2014-01-21 02:30:44
主站蜘蛛池模板: 国产情侣一区二区三区| 幺女国产一级毛片| 亚洲综合网在线观看| 国产SUV精品一区二区| 女人天堂av免费| 国产成+人+综合+亚洲欧美| 国产精品成人不卡在线观看| 成人一级免费视频| 成色7777精品在线| 精品久久香蕉国产线看观看gif| 精品亚洲麻豆1区2区3区| 久久伊伊香蕉综合精品| 亚洲免费三区| 欧美一级大片在线观看| 四虎精品国产永久在线观看| 日韩美女福利视频| 激情六月丁香婷婷| 亚洲一区二区视频在线观看| 免费不卡在线观看av| 欧美精品亚洲精品日韩专区| 色综合天天操| 久久国产精品电影| 91无码国产视频| 日韩欧美中文| 香蕉伊思人视频| 国产精品黄色片| 欧美日一级片| 爆乳熟妇一区二区三区| 国产成人综合在线观看| 欧美色视频日本| 91福利免费视频| 国产尤物视频在线| 91精品伊人久久大香线蕉| www.亚洲天堂| 国产精品真实对白精彩久久| 91蜜芽尤物福利在线观看| 国产性爱网站| 四虎成人免费毛片| 国产成熟女人性满足视频| 亚洲成网站| a亚洲视频| 夜夜拍夜夜爽| 草逼视频国产| 污污网站在线观看| 最新日韩AV网址在线观看| 国产精品免费p区| 精品丝袜美腿国产一区| 欧美一级大片在线观看| 欧美精品啪啪一区二区三区| 国产色图在线观看| 精品国产三级在线观看| 极品av一区二区| 亚洲天堂高清| 成年人福利视频| 国内老司机精品视频在线播出| 最新国产高清在线| 97狠狠操| 就去色综合| jizz在线观看| 国产情精品嫩草影院88av| 91福利免费视频| 丁香亚洲综合五月天婷婷| 亚洲视频欧美不卡| 亚洲精品国产自在现线最新| 爱做久久久久久| 久久免费视频6| 国产综合精品日本亚洲777| 又猛又黄又爽无遮挡的视频网站| 一级毛片免费不卡在线视频| 国产亚洲精品资源在线26u| 国产日韩欧美黄色片免费观看| 国产自产视频一区二区三区| 91成人在线观看| 久久国产精品夜色| h视频在线观看网站| 国产毛片一区| 麻豆国产精品视频| 欧美专区日韩专区| 91麻豆精品国产高清在线| 久久久久青草大香线综合精品| 色偷偷综合网| 免费jizz在线播放|