·綜述·
MicroRNAs及其在NF-κB通路中的作用
蔣艾豆,龔國清
(中國藥科大學藥理學研究室,江蘇 南京 211198)
摘要:MicroRNAs是一類18~25個核苷酸組成的非編碼的小分子RNA,許多研究都得出了一個共同的觀點,miRNAs在腫瘤及炎癥的發(fā)生和發(fā)展進程中都起到了很大的作用,且都是通過NF-κB來調(diào)控的。因此,很多研究學者都在研究miRNAs和它們在NF-κB信號級聯(lián)通路中的靶基因以及對腫瘤惡性發(fā)展的關(guān)鍵調(diào)控點。本文就microRNAs及其在NF-κB通路中的作用的最新研究結(jié)果做一個綜述。
關(guān)鍵詞:MicroRNAs;NF-κB;炎癥;腫瘤
基金項目:國家自然科學基金(No.81373415)
作者簡介:蔣艾豆,女,研究方向:創(chuàng)新化合物抗炎作用及機理,E-mail:jiangaidoudou@sina.com
通訊作者:龔國清,男,博士研究生,副教授,研究方向:生化藥理,Tel:13951637796,E-mail:gonggq@hotmail.com
中圖分類號:R730.231文獻標識碼:A
MicroRNAs and its action in NF-κB signaling
JIANGAi-Dou,GONGGuo-Qing
(DepartmentofPharmacology,ChinaPharmaceuticalUniversity,Nanjing211198,China)
Abstract:MicroRNAs (miRNAs) are a class of short (18~25 nucleotides in length),no-coding,single-stranded RNAs that regulate gene expression.Numerous investigations have supported the role of miRNAs in the initiation and progression of human cancer,as well as in inflammation,which are also known to be regulated by NF-κB.This article summarized the latest research results on the action in NF-κB signaling.
Key words:MicroRNAs;NF-κb;Inflammation;Tumor
MicroRNA(miRNA)是一類由多細胞動物或植物基因組的前體mRNA內(nèi)含子、mRNA獨立轉(zhuǎn)錄單位或mRNA基因族編碼的長約22個核苷酸的進化保守的內(nèi)源性非編碼單鏈RNA小分子。近年來microRNA一直是藥學、生物學研究的熱點。
1MicroRNAs的發(fā)現(xiàn)
MicroRNAs是1993年Lee等[1]對秀麗新小桿線蟲(Caenorhabditis elegans)進行突變體遺傳分析時發(fā)現(xiàn),被命名為Lin-4。研究證實Lin-4RNA主要是通過與基因的3′端非編碼區(qū)域特異性結(jié)合從而降低了Lin-14蛋白的表達水平,但對mRNA水平影響不顯著。Reinahart等[2]發(fā)現(xiàn)另一個類似的轉(zhuǎn)錄后具有調(diào)節(jié)功能的小分子RNA:Let-7,它能調(diào)控線蟲從幼蟲到成蟲的轉(zhuǎn)變。隨后Let-7的同源物在人類中被發(fā)現(xiàn),其同樣與靶目標mRNA的3′UTR結(jié)合引起靶目標mRNA的翻譯抑制和降解。目前研究證實miRNAs基因在整個生物進化進程中都存在且具有進化保守性,足以展示出miRNA在機體生命活動中發(fā)揮著必不可少調(diào)節(jié)作用。為此科學家們將這一類內(nèi)源性變大的、序列長度約18~25個核苷酸并且不編碼蛋白質(zhì)的單鏈小RNA命名為miRNAs[3],由此引發(fā)了miRNAs的研究熱潮。
2MicroRNAs的合成與作用機制
MicroRNAs對于靶基因的調(diào)節(jié)作用機制很特別,并非一對一的作用方式,而是采用一對多的作用方式,也就是說一個miRNAs分子可以同時作用于多個靶基因,并且一個基因可被多種miRNAs分子調(diào)節(jié),足以說明miRNA的調(diào)節(jié)模式為組合模式。目前已被證明在轉(zhuǎn)錄后水平上調(diào)控基因表達[4],miRNAs具有細胞和腫瘤的特異表達性。他們調(diào)控很多生物進程,包括細胞增值擴散、分化、發(fā)展、代謝、凋亡,分泌和細菌感染[5~7]。它們表達水平的異常和人類疾病息息相關(guān),如腫瘤,糖尿病,神經(jīng)系統(tǒng)紊亂,心血管疾病,哮喘和自身免疫性疾病[8,9]。
對于多數(shù)真核生物來說,miRNA首先在細胞核、細胞質(zhì)中被轉(zhuǎn)錄成為略長的初始片段(pri-miRNAs),隨后經(jīng)過一系列過程形成成熟miRNA,其大體過程共分3步:首先在細胞核中miRNA基因生成原始的轉(zhuǎn)錄片段,即pri-miRNAs;之后經(jīng)RNA內(nèi)切酶Ⅲ Drosha以DGCR8 (DiGeorge critical region-8)結(jié)合蛋白加工形成含有60~70個核苷酸的莖-環(huán)狀結(jié)構(gòu)的前體microRNA (pre-microRNA)復合物,該復合物在5′末端具有磷酸基,3′末端具有2個堿基突出[10];然后轉(zhuǎn)運蛋白Exportin 5 (為Ran-GTP依賴的細胞質(zhì)轉(zhuǎn)運蛋白)通過識別pre-microRNA的3′末端的二堿基突出信號而與pre-microRNA結(jié)合,依賴Ran-GTP將pre-microRNA輸出到細胞質(zhì)[11,12]。從細胞核內(nèi)輸出的pre-microRNA在Dicer酶的作用下,被剪切成21~25個核苷酸長度的雙鏈microRNA分子[13],隨后在RNA解旋酶的作用下使雙螺旋解旋,互補鏈被降解,另一條被PPD (PAZ and Piwi domain)蛋白家族識別,形成RNA-蛋白質(zhì)復合體即microRNA核蛋白體(microRNP),進而形成成熟的microRNA[14]。
成熟的miRNAs與miRNAs互補的序列相互結(jié)合完成雙螺旋解旋[15],其中一條結(jié)合到經(jīng)RNA誘導的基因沉默復合物(RNA-induced silencing complex,RISC)中,繼而形成了非對稱的RISC復合物。非對稱的RISC復合物結(jié)合到目標靶的mRNA位點上,該復合物中的單鏈miRNAs與目標靶的mRNA 3′UTR產(chǎn)生不完全互補配對,致使基因翻譯過程中被阻止[16]。miRNA調(diào)控基因表達,具有細胞、組織特異性,高度保守性和表達時序性等顯著特征。據(jù)推測,miRNA調(diào)節(jié)著人類三分之一的基因,參與機體諸多生理病理過程[17]。
3MicroRNAs在NF-κB信號通路中的作用
NF-κB的轉(zhuǎn)錄因子家族包括Rel(p65),RelB,c-Rel,p50/p105(NF-κB1),或者p52/p100(NF-κB2)[18]。參與免疫反應的早期、炎癥反應各階段及腫瘤的發(fā)生、發(fā)展過程中的許多分子都受NF-κB的調(diào)控。應答信號時,激活I(lǐng)κB激酶(IKK)復合體能使IkB磷酸化,隨后使其降解,這樣IκB就能與NF-κB(它含核定位信號)脫離,NF-κB隨之入核與靶標結(jié)合,包括促存活基因和編碼促炎因子、趨化因子、白細胞粘附分子的基因[19]。
許多研究表明,miRNAs在NF-κB介導的腫瘤及炎癥的發(fā)生和發(fā)展進程中都起到了很大的作用[20]。因此,很多研究學者都在尋找miRNAs在NF-κB信號通路中對炎癥及腫瘤惡性發(fā)展的關(guān)鍵靶點。下文將圍繞NF-κB信號通路中關(guān)鍵的miRNAs做一個闡述。
3.1miR-146miR-146是第一個發(fā)現(xiàn)對免疫系統(tǒng)有調(diào)控作用的microRNA。Taganov等[21]將人的THP-1細胞暴露在脂多糖(LPS)下,miR-146a和miR-146b都有很快速的表達增加。進一步研究表明miR-146a/b是通過TLR介導的且是NF-κB依賴的。更重要的是,TLR/NF-κB通路中兩個關(guān)鍵的分子,TRAF6和IRAK1,被認定為miR-146的直接靶點。這是一個負反饋通路,NF-κB的激活能上調(diào)miR-146的基因表達,上調(diào)的miR-146能進一步下調(diào)IRAK1和TRAF6來降低NF-κB的活性。后面的許多實驗也證明了NF-κB和miR-146的關(guān)聯(lián),如在人乳腺癌[22]、胰腺癌[23]中等。Bhaumik等[22]研究直接表明miR-146是NF-κB的負調(diào)控者,IκBα的磷酸化作用在絲氨酸32位上,這個位點在它降解中也很關(guān)鍵,在表達miR-146的細胞中能減少IκBα約40%的正常表達量。Perry等[24]表明在人的肺泡上皮腫瘤A549細胞中,IL-1β能引起miR-146a的表達增加,降低IL-8和趨化因子。IL-8和趨化因子是被NF-κB的激活調(diào)控的,為激活自身免疫應答后的負反饋調(diào)控炎癥反應進一步提供了證據(jù)。
3.2miR-155miR-155在人類B淋巴癌細胞中大量表達,表明這個miRNA可能與淋巴癌的病因有很大關(guān)系[25]。大量最近的研究表明miR-155能上調(diào)NF-κB。Wang等[26]發(fā)現(xiàn)miR-155和NF-κB在膽堿缺失和氨基酸缺失引發(fā)的肝癌早期中表達均上升。Xiao等[27]表明miR-155在幽門螺旋桿菌的感染中表達上升,同時也激活了NF-κB。Bala等[28]在酒精性肝臟疾病的小鼠模型中,檢測到巨噬細胞中的miR-155受NF-κB的激活而表達增加,升高的miR-155又會使得TNF-α產(chǎn)生增加。Costinean等[29]在B細胞過表達miR-155的轉(zhuǎn)基因小鼠上研究,IKKβ的轉(zhuǎn)錄水平與野生型小鼠相比下降了。因此推測,miR-155可能調(diào)控了IKKβ,限制了NF-κB的激活,形成了一個負反饋調(diào)控回路。
3.3miR-181bIliopoulos等[30]最近研究表明,miR-181b-1在人乳腺上皮MCF-10A細胞中連接炎癥和控制細胞轉(zhuǎn)化的后生開關(guān)正反饋回路中起關(guān)鍵作用。在結(jié)腸癌、前列腺癌、肝癌及MCF-10A細胞中,miR-181b-1和CYLD都有密切聯(lián)系。CYLD是腫瘤抑制劑,是一種能負調(diào)節(jié)NF-κB的去泛素化酶[31]。miR-181b-1是受STAT3激活轉(zhuǎn)錄的,介導了一個正反饋:STAT3通過和miR-181b-1的啟動子序列結(jié)合來增加它的轉(zhuǎn)錄,同時抑制了CYLD的生成,從而導致NF-κB的激活,IL-6生成增加,進一步導致STAT3磷酸化。miR-181b在正反饋回路中(NF-κB-IL-6-STAT3-miR-181b-CYLD-NF-κB)中間接調(diào)控,參與獨家后生成的促細胞轉(zhuǎn)化的回路中。
3.4miR-21與miR-181b-1不同,miR-21的作用已經(jīng)被清楚闡明,除了它在腫瘤中無處不在的存在之外,許多它的潛在的靶點也被確認了[32]。Sheedy等[33]研究表明miR-21能增加NF-κB的活性。LPS刺激細胞后,miR-21的表達增加能減弱TLR4信號通路的促炎作用,下調(diào)NF-κB的活性。抑制miR-21能下調(diào)被LPS刺激的PDCD4(凋亡相關(guān)蛋白4抗體)的表達,同時能增加NF-κB的活性,促炎因子IL-6,降低抗炎因子IL-10的表達[34]。Marquez等[35]明確了在肝臟再生的初級階段,miR-21上調(diào),導致pellino下調(diào)。pellino是NF-κB的激活劑,表明,miR-21是NF-κB的抑制劑。
3.5miR-301amiR-301a是一種新近被鑒定的通過激活NF-κB的微小RNA。通過NF-κB依賴的報告篩選方法,miR-301a從數(shù)百種人類微小RNA小基因中脫穎而出,成為最有效的NF-κB激活催化劑。Lu等[36]研究表明miR-301a下調(diào)NF-κB的抑制因子NKRF并提升NF-κB的活性。miR-301a通過抑制NKRF來提高NF-κB的活性,同時,NF-κB的激活能促進miR-301a的轉(zhuǎn)錄,這是一個典型的正反饋調(diào)節(jié)。在胰腺癌細胞中抑制miR-301a或者上調(diào)NKRF能減少NF-κB的基因表達,減弱異種移植瘤的生長,表明過表達的miR-301a能激發(fā)NF-κB的活性。
3.6miR-143Zhang等[37]表明miR-143仍是靶向NF-κB,它能提高肝癌細胞的入侵和轉(zhuǎn)移。Borralho等[38]進一步研究,過表達的miR-143降低細胞活性,能增加暴露在5-氟尿嘧啶下的結(jié)腸癌細胞的死亡,同時也影響NF-κB的表達。
近年來,越來越多跟NF-κB相關(guān)的miRNAs不斷被發(fā)現(xiàn),調(diào)控著NF-κB、IκB以及IKK蛋白的基因編碼。miR-9就是另一種由LPS激活的通過MyD88和NF-κB來調(diào)控的微小RNA。Bazzoni等[39]發(fā)現(xiàn)miR-9能由促炎細胞因子IL-1β和TNF-α調(diào)控,但不受IFN-γ調(diào)控。Chen等[40]研究表明miR-199a在卵巢癌細胞中通過抑制IKKβ的表達來減弱NF-κB的活性。Lindenblatt等[41]報道m(xù)iR-124a是第一個被發(fā)現(xiàn)通過靶向IκB家族蛋白中IκBζ的miRNA,盡管它的生物調(diào)控作用的重要性還沒研究清楚。Mott等[42]發(fā)現(xiàn)miR-29b在膽管細胞和膽管癌細胞中能抑制NF-κB。Huang等[43]發(fā)現(xiàn)miR-10a是一個新型的能調(diào)控胚胎干細胞分化平滑肌細胞的miRNA。在單核巨噬細胞分化時miR-223、miR-15和miR-16都靶向IKKα,降低這些miRNAs的表達能阻止巨噬細胞的超活化[44]。其他調(diào)控NF-κB的miRNAs包括miR-125b-1、miR-30b、miR-130a、miR-17~miR-92,它們同時能抵抗上皮細胞的感染[45]。
4結(jié)論
miRNAs靶向了很多基因,例如編碼NF-κB、IκB、IKK等的基因,以及在NF-κB信號網(wǎng)中參與正反饋、負反饋調(diào)節(jié)回路的效應蛋白。但是對于異常調(diào)節(jié)的miRNAs(不是伴隨NF-κB的活化)是否促進腫瘤的發(fā)展和進程仍然值得深入研究。盡管如此,miRNAs仍然被很多對miRNAs敏感的腫瘤細胞當做潛在靶標。
我們滿懷期待地看到新的miRNA抑制劑的發(fā)展,例如膽固醇耦合物[46]、鎖定核酸(LNAs)[47]和發(fā)現(xiàn)異常調(diào)節(jié)或者突變NF-κB信號通路的效應蛋白能為巨大數(shù)量的基于miRNA的治療方案轉(zhuǎn)化為有效的、有市場的臨床解決手段鋪路。有研究提出,疾病中miRNAs表達譜的變化具有特征性,通過測定miRNAs表達譜可以從分子層面診斷疾病,某些miRNAs有可能成為用于疾病治療的新靶點[48]。
參考文獻:
[1]Lee RC,Feinbaum RL,Ambros V.The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J].Cell,1993,75(5):843-854.
[2]Reinhart BJ,Slack FJ,Basson M,et al.The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J].Nature,2000,403(6772):901-906.
[3]Jemal A,Siegel R,Ward E,et al.Cancer statistics,2009[J].CA Cancer J Clin,2009,59(4):225-249.
[4]Flynt AS,Lai EC.Biological principles of microRNA-mediated regulation:shared themes amid diversity[J].Nat Rev Genet,2008,9(11):831-842.
[5]Chen CZ,Li L,Lodish HF,et al.MicroRNAs modulate hematopoietic lineage differentiation[J].Science,2004,303(5654):83-86.
[6]Cheng AM,Byrom MW,Shelton J,et al.Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis[J].Nucleic Acids Res,2005,33(4):1290-1297.
[7]Karp X,Ambros V.Developmental biology.Encountering microRNAs in cell fate signaling[J].Science,2005,310(5752):1288-1289.
[8]Roy S,Benz F,Luedde T,et al.The role of miRNAs in the regulation of inflammatory processes during hepatofibrogenesis[J].Hepatobiliary Surg Nutr,2015,4(1):24-33.
[9]Ha TY.MicroRNAs in Human Diseases:From Cancer to Cardiovascular Disease[J].Immune Netw,2011,11(3):135-154.
[10]Rodriguez A,Vigorito E,Clare S,et al.Requirement of bic/microRNA-155 for normal immune function[J].Science,2007,316(5824):608-611.
[11]Bohnsack MT,Czaplinski K,Gorlich D.Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs[J].RNA,2004,10(2):185-191.
[12]Lund E,Guttinger S,Calado A,et al.Nuclear export of microRNA precursors[J].Science,2004,303(5654):95-98.
[13]O′connell RM,Taganov KD,Boldin MP,et al.MicroRNA-155 is induced during the macrophage inflammatory response[J].Proc Natl Acad Sci U S A,2007,104(5):1604-1609.
[14]Martin SE,Caplen NJ.Applications of RNA interference in mammalian systems[J].Annu Rev Genomics Hum Genet,2007,8:81-108.
[15]Lucanic M,Graham J,Scott G,et al.Age-related micro-RNA abundance in individual C.elegans[J].Aging (Albany NY),2013,5(6):394-411.
[16]Ambros V.The functions of animal microRNAs[J].Nature,2004,431(7006):350-355.
[17]Hobert O.Gene regulation by transcription factors and microRNAs[J].Science,2008,319(5871):1785-1786.
[18]Csiszar A,Wang M,Lakatta EG,et al.Inflammation and endothelial dysfunction during aging:role of NF-kappaB[J].J Appl Physiol (1985),2008,105(4):1333-1341.
[19]Cheng HS,Njock MS,Khyzha N,et al.Noncoding RNAs regulate NF-kappaB signaling to modulate blood vessel inflammation[J].Front Genet,2014,5:422.
[20]Baud V,Karin M.Is NF-κB a good target for cancer therapy?Hopes and pitfalls[J].Nature Rev Drug Discov,2009,8(1):33-40.
[21]Taganov KD,Boldin MP,Chang KJ,et al.NF-kappaB-dependent induction of microRNA miR-146,an inhibitor targeted to signaling proteins of innate immune responses[J].Proc Natl Acad Sci U S A,2006,103(33):12481-12486.
[22]Bhaumik D,Scott GK,Schokrpur S,et al.Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells[J].Oncogene,2008,27(42):5643-5647.
[23]Li Y,Vandenboom TG,Wang Z,et al.miR-146a suppresses invasion of pancreatic cancer cells[J].Cancer Res,2010,70(4):1486-1495.
[24]Perry MM,Moschos SA,Williams AE,et al.Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells[J].J Immunol,2008,180(8):5689-5698.
[25]Kluiver J,Poppema S,De Jong D,et al.BIC and miR-155 are highly expressed in Hodgkin,primary mediastinal and diffuse large B cell lymphomas[J].J Pathol,2005,207(2):243-249.
[26]Wang B,Majumder S,Nuovo G,et al.Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice[J].Hepatology,2009,50(4):1152-1161.
[27]Xiao B,Liu Z,Li BS,et al.Induction of microRNA-155 during Helicobacter pylori infection and its negative regulatory role in the inflammatory response[J].J Infect Dis,2009,200(6):916-925.
[28]Bala S,Marcos M,Kodys K,et al.Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor {alpha} (TNF{alpha}) production via increased mRNA half-life in alcoholic liver disease[J].J Biol Chem,2011,286(2):1436-1444.
[29]Costinean S,Zanesi N,Pekarsky Y,et al.Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice[J].Proc Natl Acad Sci U S A,2006,103(18):7024-7029.
[30]Iliopoulos D,Jaeger SA,Hirsch HA,et al.STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer[J].Mol Cell,2010,39(4):493-506.
[31]Trompouki E,Hatzivassiliou E,Tsichritzis T,et al.CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members[J].Nature,2003,424(6950):793-796.
[32]O′connell RM,Rao DS,Chaudhuri AA,et al.Physiological and pathological roles for microRNAs in the immune system[J].Nat Rev Immunol,2010,10(2):111-122.
[33]Sheedy FJ,Palsson-Mcdermott E,Hennessy EJ,et al.Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21[J].Nat Immunol,2010,11(2):141-147.
[34]Shin V Y,Jin H,Ng E K,et al.NF-kappaB targets miR-16 and miR-21 in gastric cancer:involvement of prostaglandin E receptors[J].Carcinogenesis,2011,32(2):240-5.
[35]Marquez RT,Wendlandt E,Galle CS,et al.MicroRNA-21 is upregulated during the proliferative phase of liver regeneration,targets Pellino-1,and inhibits NF-kappaB signaling[J].Am J Physiol Gastrointest Liver Physiol,2010,298(4):G535-G541.
[36]Lu Z,Li Y,Takwi A,et al.miR-301a as an NF-κB activator in pancreatic cancer cells[J].EMBO J,2011,30(1):57-67.
[37]Zhang X,Liu S,Hu T,et al.Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression[J].Hepatology,2009,50(2):490-499.
[38]Borralho PM,Kren BT,Castro RE,et al.MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells[J].FEBS J,2009,276(22):6689-6700.
[39]Bazzoni F,Rossato M,Fabbri M,et al.Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals[J].Proc Natl Acad Sci USA,2009,106(13):5282-5287.
[40]Chen R,Alvero AB,Silasi DA,et al.Regulation of IKKβ by miR-199a affects NF-κB activity in ovarian cancer cells[J].Oncogene,2008,27(34):4712-4723.
[41]Lindenblatt C,Schulze-Osthoff K,Totzke G.IkappaBzeta expression is regulated by miR-124a[J].Cell Cycle,2009,8(13):2019-2023.
[42]Mott JL,Kurita S,Cazanave SC,et al.Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc,hedgehog,and NF-kappaB[J].J Cell Biochem,2010,110(5):1155-1164.
[43]Huang H,Xie C,Sun X,et al.miR-10a contributes to retinoid acid-induced smooth muscle cell differentiation[J].J Biol Chem,2010,285(13):9383-9389.
[44]Li T,Morgan MJ,Choksi S,et al.MicroRNAs modulate the noncanonical transcription factor NF-[kappa]B pathway by regulating expression of the kinase IKK[alpha] during macrophage differentiation[J].Nat Immunol,2010,11(9):799-805.
[45]Zhou R,Hu G,Gong AY,et al.Binding of NF-kappaB p65 subunit to the promoter elements is involved in LPS-induced transactivation of miRNA genes in human biliary epithelial cells[J].Nucleic Acids Research,2010,38(10):3222-3232.
[46]Krützfeldt J,Rajewsky N,Braich R,et al.Silencing of microRNAs in vivo with ′antagomirs′[J].Nature,2005,438(7068):685-689.
[47]Elmén J,Lindow M,Schütz S,et al.LNA-mediated microRNA silencing in non-human primates[J].Nature,2008,452(7189):896-899.
[48]Finnegan EJ,Matzke MA.The small RNA world[J].J Cell Sci,2003,116(23):4689-4693.