999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

具有逆斷面的擬純正半群的同余

2015-12-31 09:13:15王麗麗

王麗麗,閆 媛

(1.重慶理工大學 數學與統計學院,重慶 400054; 2.西北大學 數學學院,西安 710127)

具有逆斷面的擬純正半群的同余

王麗麗1,閆媛2

(1.重慶理工大學 數學與統計學院,重慶400054; 2.西北大學 數學學院,西安710127)

摘要:利用具有逆斷面的擬純正半群的分件半群L和R上的 o-同余所構成的同余對來構造此類半群的同余,證明了此類半群的所有o-同余的集合構成一個完備格。

關鍵詞:擬純正半群;逆斷面;同余;完備格

1Introductions

playaveryimportantroleininvestigatingthestructureS.In[3],McAlisterandMcFaddenshowedthat,ifSoisaQ-inversetransversalofS,thenΙandΛaresubbandsofS.TheregularsemigroupswithQ-inversetransversalSocanbeassembledbythreebricksSo, ΙandΛ,whereΙandΛareleftandrightnormalsubbandsofSrespectively(see[3]).

AregularsemigroupSiscalledquasi-orthodoxifthereexistaninversesemigroupTandasurjectivehomomorphismφ:S→Tsuchthattφ-1isacompletesimplesubsemigroupofSforeacht∈E(T),whereE(T)denotesthesetofidemopotentsofT.LetSbeaquasi-orthodoxsemigroupwithaninversetransversalSo.In[5],SaitoshowsthatI[Λ]isaleft[right]regularband.Let

Weobtainedin[5]and[11]thatL∩R=So, Ι∩Λ=E(So), E(L)=Ι, E(R)=ΛandthatΙ[Λ]isasubbandofSifandonlyifL[R]isasubsemigroupofS.Inthiscase, L[R]isaleft[right]inversesubsemigroupofS.

ThecongruenceonregularsemigroupswithinversetransversalswasstudiedbyWangandTang(see[8-10]).In[8],theauthorsassembledthecongruenceonSo.In[5],Satiogaveastructuretheoryofquasi-orthodoxsemigroupswithinversetransversals.Inthispaper,wegivetheo-congruenceonquasi-orthodoxsemigroupswithinversetransversalsbytheo-congruencepairandthestructuretheoryin[5]andprovethatthesetofallo-congruencesonthiskindofsemigroupsisacompletelattice.

2Preliminaries

Welistseveralknownresults,whichwillbeusedfrequentlywithoutspecialreferenceinthispaper.

Lemma2.1[2]LetSbearegularsemigroupwithaninversetransversalSo.Then: ① Ι={e∈E(S): eLeo}; ② Λ={f∈E(S): fRfo}.

Lemma2.2[8]Sisorthodoxifonlyifforanyx,y∈S,(xy)o=yoxo.

Lemma2.3[11]LetSbearegularseigroupwithaninversetransversalSo.

ThenR[L]isasubsemigroupofSifandonlyifI[Λ]isasubsemigroupofS.

Lemma2.4[5]LetLbealeftinversesemigroupandRarightinversesemigroup.SupposethatLandRhaveacommontranserversalSo.LetR×L→Ldescribedby(a,x)→a*xbemappingsuchthat,foranyx,y∈Landforanya,b∈R.

(Q.1) (aox)o=(a*x)o;

(Q.2) (aox)o(aox)=xoaoaooxooand

(a*x)(a*x)o=aooxooxoao;

(Q.3) aox xo(boy)=(aox)(aox)o((a*x)xoboy)and(a*x)xob*y=(a*xxo(boy))(b*y)o(b*y);

(Q.4) aoxo=aooxo,a*xo=axo,ao*x=aoxooandaoox=aox.

Defineamultiplicationontheset

by

ThenΓisaquasi-orthodoxsemigroupwithaninversetransversalwhichisisomorphictoSo.

Conversely,everyquasi-orthodoxsemigroupwithaninversetransversalcanbeconstructedinthismanner.

ForaregularsemigroupSwithaninversetransversalSo,thecompletelatticeofcongruencesonSisdenotedbyCon(S)andletρo=ρ|So.

3Themainresults

Inthissection,wefirstestablishacharacterizationofo-congruencesabstractlybyo-congruencespair.Wedescribeao-congruencespairoftheform(ρL,ρR)withρL∈Con(L)andρR∈Con(R)satisfyingsomeconditionsinorderthattheyproduceao-congruenceonSnaturally.

Definition3.1AcongruenceρofaregularsemigroupSwithaninversetransversalSoisao-congruence,ifforx,y∈S,xρyifandonlyifxoρoyo.

SupposeρRandρLareo-congruencesonRandL,respectively.Then(ρL,ρR)iscalledao-congruencepairforΓifthefollowingconditionshold:

(C.1) ρL|So=ρR|So;

(C.2) (?c∈R)(?x,y∈L)xρLy?(cox)ρL(coy) and (c*x)ρR(c*y);

(C.3) (?z∈L)(?a,b∈R)aρRb?(aoz)ρL(boz) and (a*z)ρR(b*z).

Define a relationρ(ρL,ρR) onΓby the following rule,

Theorem3.2LetΓbeaquasi-orthodoxsemigrouphavinganinversetransversalasinLemma2.4,and(ρL,ρR)beao-congruencepaironΓ.Thenρ(ρL,ρR)isao-congruenceonΓ.Conversely,everyo-congruencepaironΓcanbeconstructedintheabovemanner.

ProofLet(ρL,ρR)beao-congruencepaironΓ.Obviously, ρ(ρL,ρR)isanequivalenceonΓ.For(x,a),(y,b)∈Γ,with(x,a)ρ(ρL,ρR)(y,b),wehavexρLy,aρRb.Letz∈Landc∈Rbesuchthat(z,c)∈Γ.ByaρRbandC.3,wehave

Itfollowsthat

xxo(a oz)ρLyyo(b oz) and

(a*z)cocρR(b*z)coc

FromQ2,wehave

sothatzozoo(aoz)o=(aoz)o.Thus

Andsimilarly,

Hence,byQ1,wehave

Similarly,

Thus

Thatis,

Andwecanprovesimilarly,

Thusρ(ρL,ρR)isacongruenceonΓ.SinceρRandρLareo-congruenceonRandL,respectively.ThenwehavexoρL|S o yo,aoρR|S o bo.Itfollowsthat

Itisclearthat(x,a)o=(xo,ao)forany(x,a)∈Γ.Thereforeρ(ρL,ρR)isao-congruenceonΓ.

Conversely,assumethatρisao-congruenceonΓ.WedefinethefollowingequivalencesonLandR,respectively,

SinceρisacongruenceonΓ,wehaveρLandρRareequivalencesonLandR,respectively.

Let(x,a),(y,b),(x1,a1),(y1,b1)∈Γ.IfxρLyandx1ρLy1,then

Nowweimmediatelyget

Andthisimpliesthat

Then

Sowehaveprovedthatxx1ρLyy1.Similarly,wehaveaa1ρRbb1.

ItisobviousthatxρLyifandonlyifxoρLyoandaρRbifandonlyxoρRyo.ThereforeρL,ρRareo-congruence.

Andwehavethefollowingcases:

① ρR|So=ρL|Soisobvious.SoC.1holds.

②Letx,y∈LandxρLy.Then

Hence,forany(z,c)∈Γ,

Thatis,

Sinceρisao-congruenceonΓ,

ByQ1andQ2,

Itfollowsthat

(cox)oρL(coy)oand(c*x)oρR(c*y)o

SinceρL,ρRareo-congruence,

NowC.2holds.

③WecansimilarlyproveC,3.Nowfromtheaboveprove, (ρL,ρR)isao-congruencepaironΓ.

Bythedirectlypart, ρ(ρL,ρR)isao-congruence.If(x,a)ρ(ρL,ρR)(y,b),thenwehave

xρLy,aρRb

Thus

Itfollowsthat

Thatis

Thus, ρ(ρR,ρL)?ρ.Sinceρ?ρ(ρR,ρL)isobvious, ρ(ρR,ρL)=ρ.

Wedenotethesetofallo-congruencesonΓandthesetofallo-congruencepairsonΓconstructedasinTheorem3.2byC(Γ)andCP(Γ).

Thereverseimplicationisobvious.

Define≤onCP(Γ)by

ThenCP(Γ)isapartialorderedsetwithrespectto≤.ByTheorem3.2andLemma3.3,wecaneasilyseethatC(Γ)andCP(Γ)areisomorphicaspartialorderedset.

Proposition3.4LetΩ?C(T)andTρ=(ρL,ρR)whereρ∈Ω.Then

Thisimpliesthat

Wehaveprovethat

Now,bysumminguptheaboveresults,weobtainthefollowingtheorem.

Theorem3.5letΓbeconstructedinTheorem2.4.ThenCP(Γ)formsacompletelatticewithrespectto≤andC(Γ)isisomorphictoCP(Γ)ascompletelattice.

References:

[1]BlythTS,McFaddenRB.Regularsemigroupswithamultiplicativeinversetransversal[J].ProcRoySocEdinburgh, 1982, 92A: 253-270.

[2]TangXL.Regularsemigroupswithinversetransversal[J].SemigroupsForum, 1997, 55(1): 24-32.

[3]McAlisterDB,McFaddenRB.Regularsemigroupswithinversetransversals[J].QuartJMathOxford, 1983, 34(2): 459-474.

[4]McAlisterDB,McFaddenRB.Regularsemigroupswithinversetransversalasmatrixsemigroups[J].QuartJMathOxford, 1984, 35(2): 455-474.

[5]SatioT.Quasi-orthodoxsemigroupswithinversetransversals[J].SemigroupForum, 1987, 36:47-54.

[6]PetrichM.Thestructureofcompletelysemigroups[J].TransAmMathSoc, 1974, 189: 211-236.

[7]PetrichM,ReillyN.Completelyregularsemigroups[M].NewYork:Wiley, 1999.

[8]WangLM.OncongruencelatticeofregularsemigroupswithQ-inversetransversals[J].SemigroupForum, 1995, 50: 141-160.

[9]TangXL,WangLM.Congruencesonregularsemigroupswithinversetransversals[J].CommAlgebra, 1995, 23: 4157-4171.

[10]WangLM,TangXL.Congruencelatticeofregularsemigroupswithinversetransversals[J].Comm.Algebra, 1998, 26: 1234-1255.

[11]SaitoT.Anoteonregularsemigroupswithinversetransversals[J].SemigroupForum, 1986,33: 149-152.

(責任編輯劉舸)

收稿日期:2015-06-18

基金項目:西北大學研究生自主創新基金資助項目(YZZ14082)

作者簡介:王麗麗(1982—),女,山東泰安人,博士,主要從事代數學群論研究。

doi:10.3969/j.issn.1674-8425(z).2015.08.027

中圖分類號:O175

文獻標識碼:A

文章編號:1674-8425(2015)08-0150-05

CongruencesonQuasi-OrthodoxSemigroupswithInverseTransversals

WANGLi-li1, YAN Yuan2

(1.CollegeofMathematicsandStatistics,ChongqingUniversityofTechnology,

Chongqing400054,China; 2.SchoolofMathematics,

NorthwestUniversity,Xi’an710127,China)

Abstract:We gave a o-congruence on a quasi-orthodox semigroups with inverse transversals Soby the o-congruence pair abstractly which consists of o-congruence on the structure component parts L and R. We proved that the set of all o-congruences on this kind of semigroups is a complete lattice.

Key words:quasi-orthodox semigroups; inverse transversal; congruence; complete lattice

引用格式:王麗麗,閆媛.具有逆斷面的擬純正半群的同余[J].重慶理工大學學報:自然科學版,2015(8):150-154.

Citationformat:WANGLi-li,YANYuan.CongruencesonQuasi-OrthodoxSemigroupswithInverseTransversals[J].JournalofChongqingUniversityofTechnology:NaturalScience,2015(8):150-154.

主站蜘蛛池模板: 欧美一区精品| 黄色三级毛片网站| 国产哺乳奶水91在线播放| 久久久久久国产精品mv| 国产一线在线| 91热爆在线| 成·人免费午夜无码视频在线观看| 久久情精品国产品免费| 四虎影院国产| 成年女人a毛片免费视频| 久久精品国产亚洲AV忘忧草18| 欧美成人h精品网站| 无码高潮喷水专区久久| 欧美a网站| 色婷婷成人| 精品人妻无码中字系列| 国产成人精品视频一区二区电影 | 99精品伊人久久久大香线蕉| 五月婷婷亚洲综合| 成人欧美在线观看| 香蕉视频在线观看www| 精品1区2区3区| 中文国产成人精品久久| 狠狠v日韩v欧美v| 丁香综合在线| 一级毛片在线直接观看| 97久久超碰极品视觉盛宴| 国产日韩丝袜一二三区| 国产精品成人一区二区不卡 | 强乱中文字幕在线播放不卡| 2021最新国产精品网站| 亚洲人成网站在线观看播放不卡| 欧美日本激情| 国内精品视频区在线2021| 91精品aⅴ无码中文字字幕蜜桃| 91网在线| 亚洲人成网站在线播放2019| 欧美激情,国产精品| 波多野结衣国产精品| 亚洲婷婷六月| 亚洲天堂首页| 欧美日韩国产在线播放| 狠狠干综合| 久久精品免费国产大片| 亚洲欧美精品在线| 中文字幕在线永久在线视频2020| 午夜性爽视频男人的天堂| 亚洲男女在线| 日本五区在线不卡精品| 热热久久狠狠偷偷色男同| 青青青视频免费一区二区| 2020国产精品视频| 91亚洲视频下载| 亚洲国产精品一区二区第一页免| 欧美亚洲一二三区| 久久精品亚洲热综合一区二区| 伊人国产无码高清视频| 亚洲综合在线最大成人| 亚洲成a人片7777| 国产传媒一区二区三区四区五区| 伊人色综合久久天天| 欧美中文字幕一区二区三区| 日韩无码视频播放| 国产成人精品综合| 日韩精品一区二区三区大桥未久| 精品国产污污免费网站| 性欧美在线| 日韩av高清无码一区二区三区| 色婷婷综合激情视频免费看| 亚洲成a人片77777在线播放| 久久亚洲精少妇毛片午夜无码| 黄色网页在线播放| 666精品国产精品亚洲| 国产白浆视频| 欧美在线黄| 午夜福利亚洲精品| 91娇喘视频| 2022国产91精品久久久久久| 亚洲成人在线免费| 久久综合九色综合97婷婷| 日韩精品成人在线| 一级毛片高清|