999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

乘積空間上的抽象Hardy空間

2016-02-08 10:37:20龔汝明
廣州大學學報(自然科學版) 2016年6期
關鍵詞:定義數學

龔汝明

(廣州大學 數學與信息科學學院, 廣東 廣州 510006)

乘積空間上的抽象Hardy空間

龔汝明

(廣州大學 數學與信息科學學院, 廣東 廣州 510006)

文章首先定義抽象Hardy空間;然后給出保證算子從抽象Hardy空間到L1空間有界的一般條件;最后,定義乘積空間上的BMO空間,并研究了其與抽象Hardy空間的關系.

乘積空間; Hardy空間; BMO

0 Introduction

The development of the theory of Hardy spaces inRnwas initiated by STEIN, et al[1], and was originally tied to the theory of harmonic functions. Realvariable methods were introduced into this subject by FEFFERMAN, et al[2]; the evolution of their ideas led eventually to characterizations of Hardy spaces via the atomic or molecular decomposition. See for instance[3]and references therein.

In order to establish Calderón-Zygmund theory with multiparameter, fourier analysis on product spaces was introduced later in the ’70 s and studied extensively in the ’80 s by a number of well known mathematicians, including CHANG, FEFFERMAN, JOURNé[4-8]. For recent works, see also Refs[9-13]. In this paper, we study the Hardy spaces defined on domains inRn×Rm. Note that domains inRn×Rmmay not be homogeneous type.

LetΩbe an open set inRn×Rmwith finite measure. Denote bym(Ω) the maximal dyadic subrectangles ofΩ. Letm1(Ω) denote those dyadic subrectanglesR?Ω,R=I×Jthat are maximal in thex1direction. In other words ifS=I′×J?Ris a dyadic subrectangle ofΩ, thenI=I′. Definem2(Ω) similarly in thex2direction. For anyR=I×J?Ω, letlbe the biggest dyadic cube containingI, so thatl×J?, where={x∈Rn×Rm:Ms(χ)(x)>1/2}. Next, letSbe the biggest dyadic cube containingJ, so thatl×S?}.??lsothatl×J?.Defineγ2(R)similarly.ThenJourne′slemma, (inoneofitsforms)says,foranyδ>0,

(1)

forsomecδdependingonlyonδ,notonΩ.

LetusdenotebyQnthecollectionofalldyadiccubesinRn:

Qn={I:IisdyadiccubeinRn}

(2)

LetAn={AI}I∈Qnbe a collection ofL2-bounded linear operator, indexed by the collectionQn. We assume that these operatorsAIare uniformly bounded onL2(Rn). Similarly we can defineQmandBmby replacingnbym.

Now, we define atoms by using the collectionAnandBm.

αcan be decomposed into

(3)

whereR?Ω(say,R=IR×JRin the sum) is maximal dyadic subrectangle ofΩand there exists a functionbRsuch that

(i)αR=AIRBJRbR;

(ii) suppbR?R;

Now we are able to define our abstract Hardy spaces:

(4)

We define the norm:

(5)

1 Continuity theorem on the Hardy space

In this section, we propose some general conditions which guarantee the continuity from our Hardy space intoL1. We have the following result.

Theorem 1 LetTbe anL2(Rn×Rm)-bounded sublinear operator satisfying the following estimates: for all open setΩwith finite measure and all maximal dyadic subrectangleR=I×JofΩ, for allji≥7,i=1,2, there existsβ>nsuch that for allL2-functionsfsupported inR

(6)

(7)

(8)

(9)

(10)

In order to prove Theorem 1, we need the following result.

Lemma 1 Denote

(11)

(12)

(13)

Proof of Theorem 1 From Lemma 1, we only need to prove that there exists a constantCsuch that for all atomα,

(14)

(15)

D+E.

ForthetermD,weobservethat

|T(AIBJbR)(x)|dx=D1+D2.

LetusfirstestimatethetermD1.UsingHolder′sinequalityandEq.(6),wehave

UsingHolder′sinequalityandEq.(7),wehave

|T(AIBJbR)(x)|dx≤

2 The dual space of Hardy space

First,wegivethedefinitionoftheBMOspace.

(16)

wherethesuptakeoverallopensetΩwith finite measure. We define BMO as the completion of Bmo with this pseudo-norm.

We have the following conclusion.

Proof Letf∈ Bmo, thenf∈L2. Letα∈L2be an atom, then there exists open setΩwith finite measure andbRsuch thatα=AIBJbR. Then we get

This completes the proof of this proposition.

[1] STEIN E M, WEISS G. On the theory of harmonic functions of several variables. I. The theory ofHpspaces[J]. Acta Math, 1960,103(1): 25-62.

[2] FEFFERMAN C, STEIN E M.Hpspaces of several variables[J]. Acta Math, 1972, 129(1): 137-195.

[3] HOGMANN S, LU G Z, MITREA D, et al. Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates[J]. Mem Am Math Soc, 2011, 214: 78.

[4] CHANG S Y, FEFFERMAN R. A continuous version of the duality of H1 and BMO on the bidisc[J]. Ann Math, 1980, 112(1): 179-201.

[5] FEFFERMAN R, STEIN E M. Singular integrals on product spaces[J]. Adv Math, 1982, 45(2): 117-143.

[6] FEFFERMAN R. Harmonic analysis on product spaces[J]. Ann Math, 1987, 126(1): 109-130.

[7] JOURNE J L. Calderon-Zygmund operators on product space[J]. Rev Mat Iberoam, 1985, 1(3): 55-92.

[8] JOURNE J L. Two problems of Calderon-Zygmund theory on product spaces[J]. Ann Inst Fourier, 1988, 38(1): 111-132.

[9] NAGEL A, STEIN E M. On the product theory of singular integrals[J]. Rev Mat Iberoam, 2004, 20(2): 531-561.

[10]HAN Y S, LI J, LU G Z. Duality of multiparameter Hardy space Hp on product spaces of homogeneous type[J]. Ann Scuola Norm Sup Pisa, 2010, 9(4): 645-685.

[11]HAN Y S, LI J, LU G Z. Multiparameter Hardy space theory on arnot-Carath eodory spaces and product spaces of homogeneous type[J]. Trans Am Math Soc, 2013, 365(1): 319-360.

[12]LI B, BOWNIK M, YANG D C. Littlewood-Paley characterization and duality of weighted anisotropic product Hardy spaces[J]. J Funct Anal, 2014, 266(5): 2611-2661.

[13]CHEN P, DUONG X T, LI J, et al. Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous type[J]. Math Z, 2016, 282 (3): 1033-1065.

【責任編輯: 周 全】

Hardy spaces on product domainsGONG Ru-ming(School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China)

L1. At last, we give the definition of the BMO space and study the relationship between abstract Hardy spaces and BMO space.

product domains; Hardy spaces; BMO

O 174 Document code: A

Foundation items: Supported by NNSF of China (11301100); Specialized Research Fund for the Doctoral Program of Higher Education (20124410120002); Foundation for Distinguished Young Teachers in Higher Education of Guangdong Province (YQ2015126); Foundation for Young Innovative Talents in Higher Education of Guangdong (2014KQNCX111) and Innovation Program of Higher Education of Guangdong (2015KTSCX105).

1671- 4229(2016)06-0030-05

O 174

Received date: 2016-04-03; Revised date: 2016-06-12

Biography: GONG Ru-ming(1983- ), male, associate professor. Email: gongruming@163.com.

猜你喜歡
定義數學
永遠不要用“起點”定義自己
海峽姐妹(2020年9期)2021-01-04 01:35:44
定義“風格”
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
成功的定義
山東青年(2016年1期)2016-02-28 14:25:25
數學也瘋狂
修辭學的重大定義
當代修辭學(2014年3期)2014-01-21 02:30:44
山的定義
公務員文萃(2013年5期)2013-03-11 16:08:37
錯在哪里
主站蜘蛛池模板: 日韩在线视频网| 2021最新国产精品网站| 亚洲视频一区| 国产人人射| 丁香六月综合网| 91青青视频| 午夜日b视频| 精品国产三级在线观看| 2020极品精品国产 | 成人自拍视频在线观看| 久久精品只有这里有| 性欧美在线| 国产熟女一级毛片| 色婷婷综合激情视频免费看 | 日韩毛片免费| 午夜福利在线观看成人| 欧美激情视频一区二区三区免费| 97久久免费视频| 99精品高清在线播放| 久久久久国产一级毛片高清板| 久久久久国色AV免费观看性色| 91亚洲视频下载| 欧美精品伊人久久| 成年A级毛片| 久久综合色视频| 亚洲精品免费网站| 亚洲嫩模喷白浆| 98超碰在线观看| 中文字幕在线播放不卡| 日韩欧美国产综合| 黄色网页在线观看| 夜夜操天天摸| 日本不卡在线视频| 亚洲系列无码专区偷窥无码| 最新国产高清在线| 一级全黄毛片| 欧美α片免费观看| 国产欧美高清| 国产一级毛片在线| 四虎AV麻豆| 天天综合亚洲| 五月六月伊人狠狠丁香网| 曰韩人妻一区二区三区| 福利视频久久| 国产产在线精品亚洲aavv| 久久久久夜色精品波多野结衣| 亚洲一区二区成人| 久久青草精品一区二区三区| 高清色本在线www| 奇米精品一区二区三区在线观看| 亚洲男人天堂网址| 无码专区在线观看| 亚洲中文久久精品无玛| 国产精品自在自线免费观看| 国产性生交xxxxx免费| 色视频久久| 免费一级毛片在线观看| a亚洲天堂| 丁香六月综合网| 久久精品国产亚洲AV忘忧草18| 亚洲AV电影不卡在线观看| 国产女人18毛片水真多1| 欧美亚洲一区二区三区在线| 伊在人亚洲香蕉精品播放 | 91最新精品视频发布页| 亚洲天堂伊人| 久久这里只有精品2| 日韩精品一区二区深田咏美| 手机在线国产精品| 91在线播放国产| 欧美一级视频免费| 国产精品福利尤物youwu| 欧美成人影院亚洲综合图| 老司国产精品视频| 99re热精品视频国产免费| 欧美有码在线观看| 国产成人精品视频一区视频二区| 99久久精品免费观看国产| 亚洲欧美日韩久久精品| 伊人色在线视频| 午夜a视频| 免费va国产在线观看|