999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于DAPSO—UGM(1,1)模型的物流需求預測

2016-03-24 08:55:28張連偉何梁耿立艷
中國市場 2016年10期

張連偉 何梁 耿立艷

[摘要]物流需求預測的準確性對我國的經濟發展具有重要作用。為提高物流需求的預測精度,文章利用動態自適應粒子群優化算法(DAPSO)優化無偏灰色預測模型[UGM(1,1)]參數,構建DAPSO-UGM(1,1)模型預測物流需求。以我國物流需求為例,證明了DAPSO-UGM(1,1)模型的有效性,并預測了未來我國的物流需求,為物流需求預測提供了新的方法。

[關鍵詞]動態自適應粒子群算法;無偏灰色預測模型;物流需求預測

[DOI]1013939/jcnkizgsc201610010

隨著經濟的發展,物流需求在交通網絡規劃、物流設施投資和物流規劃等方面扮演著越來越重要的角色,因此準確的物流需求預測對我國的經濟發展具有重要的意義。現有的預測模型中較為常用的是時間序列、回歸分析和灰色預測模型,由于時間序列和回歸分析預測模型在實際應用中考慮的相關因素較少,因此預測誤差相對較大,而灰色預測模型在預測時需要的數據較少,預測精度較高且適用于中長期的預測,所以不少學者開始將灰色預測(GM(1,1))模型引入物流需求預測[1,2]中,而在物流需求預測中GM(1,1)模型[3]是最常用的。在GM(1,1)模型的基礎上,又出現了預測性能優于GM(1,1)模型的無偏灰色預測(UGM(1,1))模型[4],但該模型隨著發展系數的變大,性能有變差的趨勢,進而導致物流需求的預測精度下降。粒子群優化(PSO)算法是一種群智能優化算法[5],在參數優化方面得到廣泛應用。作為PSO算法的改進算法,動態自適應粒子群優化(DAPSO)算法[6]根據粒子早熟收斂程度和個體適應度值動態地調整慣性權重,提高了算法的收斂速度和精度。本文利用DAPSO算法優化UGM(1,1)模型的參數,以進一步提高物流需求預測的精度。

1 無偏灰色預測模型

GM(1,1)模型是以“部分信息已知,部分信息未知”的“小樣本”“貧信息”的不確定性系統為研究對象,由已知的部分信息預測未知信息的一種模型。而無偏灰色預測(UGM(1,1))模型則對GM(1,1)模型做了進一步改進,消除了傳統GM(1,1)模型存在的固有偏差。UGM(1,1)模型的建模步驟如下:

2 動態自適應粒子群優化算法

PSO算法是最近幾年內出現的迭代優化算法,首先給定一組初始值,然后根據已知函數確定適應值(fitness value)并且不斷地進行迭代優化,即模擬粒子在空間內按照一定的約束,進行相應的搜索,從而使得粒子找到本身的最優值,包括個體極值(pbest)和群體極值(gbest)。

4 模型應用

4.1 數據選取

以貨運量作為物流需求的量化指標,選取2006—2013年我國貨運量數據,檢驗DAPSO-UGM(1,1)模型的預測效果。所用數據來源于《中國統計年鑒2014》。表1給出2006—2013年我國貨運量數據。由表1可知,我國2006—2013年貨運量基本呈指數增長趨勢,因而采用DAPSO-UGM(1,1)模型進行分析和預測是合理的。

4.2 模型檢驗

DAPSO-UGM(1,1)模型中,DAPSO算法自身參數設置如下:N=50,Wmax=1.0,Wmin=0.2,c1=2.8,c2=1.2。DAPSO算法優化選擇參數和時,為減少隨機性影響,DAPSO算法連續優化10次,選擇最優的*和*構建UGM(1,1)模型。DAPSO-UGM(1,1)模型預測貨運量時,選取前6個數據為歷史數據進行下一步預測。同時利用GM(1,1)模型、UGM(1,1)模型和PSO-UGM(1,1)模型預測同時段貨運量,其中,PSO的自身參數設置為:N=50,w=0.5,c1=2.8,c2=1.2。將三模型預測結果與DAPSO-UGM(1,1)模型進行比較,結果如表2所示。

由表2可知,DAPSO-UGM(1,1)模型的最大、最小相對誤差為3.39%和0.02%,分別小于GM(1,1)模型、UGM(1,1)模型和PSO-UGM(1,1)模型的對應值,同時其平均相對誤差也明顯小于其他三模型,這有力證明了DAPSO-UGM(1,1)模型的預測精度優于其他三模型。因此,基于DAPSO算法優化的UGM(1,1)是一種有效的物流需求預測方法。

4.3 外推預測

將DAPSO-UGM(1,1)模型應用于未來物流需求預測中,利用DAPSO-UGM(1,1)模型預測2014—2020年的物流需求,預測結果如表3所示。從表3可以看出,未來7年物流需求將呈現出先增后減的變化趨勢。

5 結 論

本文結合DAPSO算法與UGM(1,1)模型,構建DAPSO-UGM(1,1)物流需求預測模型,利用DAPSO算法優化UGM(1,1)模型參數。通過對我國物流需求的實例分析,驗證了DAPSO-UGM(1,1)模型是一種有效的物流需求預測方法,并利用該模型預測了未來我國的物流需求。

參考文獻:

[1]張潛.物流需求回收預測及其實證分析[J].哈爾濱工業大學學報:社會科學版,2010,12(1): 84-89.

[2]王小麗.基于多因素灰色模型的物流需求量預測[J].統計與決策,2013(14): 86-87.

[3]劉思峰.灰色系統理論及其應用[M].北京:科學出版社,2014.

[4]劉鵠,吉培萊,鄒紅波.無偏灰色預測模型在邊坡變形預測中的應用[J].三峽大學學報:自然科學版,2007,29(1): 43-45.

[5]張芳芳,王建軍,張勇.少控參數的分層式骨干粒子群優化算法[J].系統工程理論與實踐,2015,35(12): 3217-3224.

[6]盛桂敏,薛玉翠,張博陽.動態自適應粒子群優化算法[J].綏化學院學報,2011,31(6): 190-192.

主站蜘蛛池模板: 欧美yw精品日本国产精品| 亚洲一区二区三区国产精华液| 色哟哟精品无码网站在线播放视频| 久无码久无码av无码| 国产欧美视频综合二区| 国产在线视频欧美亚综合| 97视频在线观看免费视频| 99re免费视频| 丁香五月激情图片| 岛国精品一区免费视频在线观看| 波多野结衣爽到高潮漏水大喷| 国产精品尹人在线观看| 亚洲成AV人手机在线观看网站| 久久无码av三级| 99久久精品国产自免费| 2021国产在线视频| 久操线在视频在线观看| 激情综合五月网| 国产成人精品高清不卡在线| 2021国产精品自产拍在线观看 | 日韩AV无码一区| 农村乱人伦一区二区| 亚洲欧美日韩动漫| 久久久久青草大香线综合精品| 色播五月婷婷| 亚洲欧美成人在线视频| 免费可以看的无遮挡av无码| 亚洲美女一级毛片| 欧美激情综合一区二区| 五月婷婷导航| 久草视频精品| 亚洲精品欧美重口| 亚洲va视频| 国产av色站网站| 亚洲va视频| 亚洲无码91视频| 国产视频大全| 国产视频资源在线观看| 欧美国产视频| 综合色天天| 色天堂无毒不卡| 国产精品黑色丝袜的老师| 3D动漫精品啪啪一区二区下载| 国产主播一区二区三区| 久久精品娱乐亚洲领先| 日韩欧美国产三级| 69av免费视频| 波多野结衣无码AV在线| 中文成人在线| 国产在线一区视频| 亚洲中文字幕在线观看| 九月婷婷亚洲综合在线| h视频在线播放| 国产在线一区视频| www.国产福利| 欧美翘臀一区二区三区| 天天做天天爱天天爽综合区| 国产成人久久综合一区| 中文字幕精品一区二区三区视频| 男人天堂亚洲天堂| 91成人在线免费观看| 91免费观看视频| 中文字幕亚洲精品2页| 青草精品视频| 国产精品太粉嫩高中在线观看| 久久婷婷人人澡人人爱91| 91视频免费观看网站| 国产亚洲视频中文字幕视频| 无码又爽又刺激的高潮视频| 欧美在线黄| 中文字幕在线观看日本| 国产久操视频| 狠狠色综合久久狠狠色综合| 亚洲免费毛片| 91精品国产自产91精品资源| 亚洲AV人人澡人人双人| 国产精品免费入口视频| 亚洲综合一区国产精品| 欧美在线三级| 免费看美女毛片| 老色鬼久久亚洲AV综合| 露脸国产精品自产在线播|