涂艷陽,徐曉珊,張永生,成迎端
(第四軍醫大學:1唐都醫院實驗外科,2唐都醫院,陜西西安710038;3賽福地,美國新澤西08902)
?
膠質瘤中甲基化沉默腫瘤抑制因子的研究進展
涂艷陽1,徐曉珊1,張永生2,成迎端3
(第四軍醫大學:1唐都醫院實驗外科,2唐都醫院,陜西西安710038;3賽福地,美國新澤西08902)
【摘 要】腫瘤抑制基因(tumor suppressor genes,TSGs)的表觀遺傳沉默對膠質瘤的發生和發展至關重要.越來越多的與細胞周期、增殖、凋亡、遷移、浸潤、DNA修復和信號通路密切相關的且被甲基化調控的TSGs被鑒定出來.TSGs在膠質瘤里特異性的甲基化表明其既可以作為分子診斷的標記物,也可能成為治療膠質瘤的一個靶標.本研究對人腦膠質瘤中被甲基化沉默的TSGs進行了總結,這為理解膠質瘤發展過程中表觀遺傳學修飾的紊亂提供了依據.
【關鍵詞】膠質瘤;甲基化沉默腫瘤;抑制因子;研究進展
膠質瘤是成人中樞神經系統最常見的惡性腫瘤之一[1].按細胞的組織學特征不同將神經膠質瘤分為以下幾種:室管膜瘤(室管膜細胞),星形細胞瘤(星形細胞)和少突膠質細胞瘤(少突膠質細胞)[2].根據世界衛生組織對腦腫瘤進行分類,神經膠質瘤可進一步被分成低級(Ⅰ級和Ⅱ級)及高級(Ⅲ級和Ⅳ級)腫瘤.Ⅳ級膠質母細胞瘤(glioblastom,GBM)是最嚴重的惡性膠質瘤.盡管各種治療手段如手術、放療、光動力療法和化療等在不斷進步,然而Ⅳ級膠質母細胞瘤的中位生存期仍然只有14.6個月[3-4].大約60%的高級別膠質瘤為GBM,其發病率約為0.003%[5].研究這種惡性腫瘤的分子機制和早期診斷對于GBM的成功治療至關重要.從一個正常細胞發展至一個腫瘤是一個復雜的多步驟過程.有很多原癌基因、抑癌基因和信號轉導通路都參與其中[6-7].癌癥的發生過程是由遺傳和表觀遺傳改變的累積所致,這直接導致了細胞增殖與凋亡之間的不平衡.異常的表觀遺傳修飾,如DNA甲基化,組蛋白修飾,核小體定位,非編碼RNA和microRNA在癌癥的發展過程中起重要作用[7].目前,在腫瘤發生過程中表觀遺傳學改變比遺傳學變化更重要,這一觀點已經被廣泛接受[8].目前已經鑒定出了很多在多種腫瘤中被甲基化沉默的腫瘤抑制因子,而且這些基因可以作為癌癥診斷的生物標記物[9-14].在膠質瘤中甲基化的腫瘤抑制因子無疑是非常好的生物標記分子[15].在膠質瘤中已經鑒定出了非常多的抑癌基因,包括p16INK4a、p14ARF、MLH1、O6?甲基鳥嘌呤?DNA甲基轉移酶(methyl guanine?DNA methyltransferase,MGMT)、NDRG2、SLIT2等.本研究將總結在膠質瘤中已經研究過的被甲基化修飾的腫瘤抑制因子并根據他們的生物學功能進行分類,如細胞周期、細胞凋亡、入侵、DNA修復和通路相關的基因(表1).一些有代表性的基因也在本研究中給出了詳細的描述,所有的這些基因都有可能在以后的研究中成為潛在的診斷標記物和治療靶標.
在正常細胞中,細胞周期和增殖是由一系列因子調控的.在這個調控過程中的錯誤與腫瘤的發生有很大關系.p16INK4a和p14ARF是CDKN2A的選擇性剪接的兩個亞型,位于人類染色體9p21上[16-17].作為細胞周期蛋白依賴性激酶4(CDK4)和6(CDK6)的抑制劑,p16維持腫瘤抑制基因Rb的非磷酸化狀態從而抑制細胞周期進程.p16的啟動子甲基化在腦膠質瘤中是很常見的,它的甲基化導致細胞周期進程失去控制,引起膠質瘤細胞的大量增殖[15-18].p14可通過誘導MDM2蛋白的構象變化抑制MDM2介導的p53蛋白降解.p14ARF的表觀遺傳失活增加了p53蛋白的降解,從而導致p53誘導的細胞凋亡的下調[19].p16INK4a和p14ARF在膠質瘤里的甲基化已經有很多文獻報道過[19-22].除了這些眾所周知的細胞周期的調控因子外,還有很多其它被甲基化抑制的基因也具有調節神經膠質瘤細胞周期和增殖的能力.NSD1基因編碼一個參與染色質調控的組蛋白甲基轉移酶.它包含多個功能區域,一個SET結構域,植物同源結構域,和脯氨酸?色氨酸?色氨酸?脯氨酸結構域[23].在人類神經母細胞瘤和神經膠質瘤細胞中NSD1基因會被啟動子甲基化抑制.在轉化的細胞中,NSD1的表觀遺傳失活導致組蛋白賴氨酸殘基H4?K20和H3?K36的甲基化特異性減少.NSD1可以通過減少集落形成密度和抑制細胞生長來達到抑制腫瘤的功能.在神經母細胞瘤和腦膠質瘤中NSD1的CpG島過甲基化經常被檢測到.最重要的是,NSD1啟動子過甲基化是在高風險神經母細胞瘤不良預后的一個預測因素.這些結果表明,NSD1的失活導致了組蛋白甲基化紊亂,且它具有很好的應用價值[23].
受體蛋白酪氨酸磷酸酶促進因子PTPRD是高度保守的受體家族PTP中的一個成員.PTPRD基因編碼帶有細胞質酪氨酸磷酸酶結構域的跨膜蛋白,因為啟動子CpG島的過甲基化此基因經常被沉默.它的失活有50%以上發生在惡性膠質瘤,同時這種失活也對應了膠質瘤患者不良的預后反應.功能研究表明野生型PTPRD通過癌蛋白STAT3去磷酸化從而抑制GBM和其他腫瘤的生長.這些結果表明PTPRD是一個在GBM的發生期間時被沉默的癌癥抑制因子[24].
另一個細胞周期調節因子,Krüppel樣因子4 (KLF4),在神經膠質瘤中也被甲基化調控.KLF4是KLF鋅指結構轉錄因子家族的一個成員.它包含三個高度保守C2H2類型的的鋅指結構與一個N端反式激活結構域[25-26].KLF4在RNA和蛋白水平上的下調有40%以上是發生在原發性的髓母細胞瘤中.體內和體外實驗表明KLF4在D283髓母細胞系的會顯著抑制髓母細胞瘤的生長[27].這些都說明KLF4已經被證實在髓母細胞瘤中是一個腫瘤抑制因子.
NDRG2,N?Myc的下游調節基因2,位于14號染色體q11.2上.研究發現NDRG2在人腦膠質瘤中的表達顯著低于癌旁正常組織,而這種下調也是由啟動子甲基化引起的,且它的下調與膠質瘤患者的癌癥等級和患者預后呈負相關性.體外實驗表明,在人源膠質瘤細胞U373和U138細胞中過表達NDGR2能夠抑制細胞增殖.深層次的研究表明,NDRG2主要通過調節組蛋白乙酰化的水平來控制神經膠質瘤細胞的生長.
細胞凋亡在許多生理過程中起關鍵作用,如胚胎發育和組織更新.當細胞凋亡發生異常時會導致多種疾病的發生,其中也包括癌癥[28].研究發現,一些與凋亡相關的基因在神經膠質瘤中也會被DNA甲基化沉默.RANK/TNFRSF11A基因編碼I型跨膜蛋白,其通過與其配體RANKL結合,磷酸化腫瘤壞死因子受體相關蛋白從而激活信號傳導途徑,如核轉錄因子NF?κB、JNK、ERK、p38和AKT/PKB[29].RANK/TN?FRSF11A的啟動子甲基化在膠質瘤組織和膠質瘤細胞系中是很常見的.在膠質瘤細胞系中恢復RANK/TNFRSF11A的表達會引起克隆形成顯著減少,細胞凋亡明顯增加.該基因通過調控NF?κB、環磷酸腺苷(cAMP)/蛋白激酶α(cAMP應答元件[CRE])、缺氧誘導因子、Oct4和Wnt等通路調控凋亡[30].
Neogenin在細胞凋亡,分化和軸突定向發育的調控中起作用,同時研究人員也發現其在結腸癌組織中表達被抑制.研究表明在膠質瘤中Neogenin有很大幾率通過啟動子甲基化而下調,Neogenin的下調不僅與膠質瘤惡性程度而且與神經膠質瘤復發呈負相關.在SHG?44細胞中過表達Neogenin能夠促進細胞凋亡.目前的研究表明,Neogenin的下調可以促進腦膠質瘤發生的[31].
非甾體抗炎藥活化基因NAG?1是轉化生長因子β家族成員.研究表明,NAG?1在膠質瘤組織和膠質瘤細胞系中經常被甲基化.NAG?1的基礎表達水平與神經膠質瘤分級成反比.在膠質瘤細胞它的表達可以通過去甲基化藥物恢復[32].NAG?1作為一個抑癌基因,在神經膠質瘤細胞中是通過誘導凋亡發揮作用的,而PI3K/Akt和Smad信號途徑在NAG?1誘導的GBM細胞凋亡中則發揮相反的作用[33].
癌細胞的遷移和侵襲的能力使得它能夠從原發灶轉移到周圍的組織[34].參與轉移的過程中,細胞?細胞和細胞?基質間相互作用至關重要.細胞粘附的破壞導致接觸生長抑制作用消失,這是腫瘤產生的早期步驟[15].WNK2,絲氨酸/蘇氨酸激酶,是WNK蛋白激酶亞家族的一員.WNK2是一個抑癌基因,在膠質瘤中通過啟動子甲基化表達下調.沒有WNK2表達的患者預后都較差.研究發現,WNK2下調后JNK失活,引起MMP2表達減少和活性降低,從而導致腦膠質瘤細胞的侵襲增加[35-36].
粘附連接相關蛋白1(adherens junctional associ?ated protein?1,AJAP1)是在細胞粘附連接處的一個跨膜蛋白,具有抑制神經膠質瘤細胞粘附和遷移的功能.AJAP1可以易位至細胞核,并通過其與β連環蛋白復合物的相互作用調節基因表達.AJAP1的啟動子甲基化在少突膠質細胞中經常發生,這直接導致了AJAP1的表達水平降低,而該基因的低表達與降低患者生存率下降直接相關[37-38].
膠質瘤侵襲也被分泌的蛋白酶(例如組織蛋白酶)和內源性抑制劑(半胱氨酸蛋白酶抑制劑)之間的相互作用所調節.半胱氨酸蛋白酶抑制劑E/M (CST6)是在神經膠質瘤中經常過表達的組織蛋白酶B的強效抑制劑.研究表明,在膠質瘤樣本中CST6被頻繁下調,此種下調與CST6啟動子甲基化有關.在神經膠質瘤細胞系中過表達半胱氨酸蛋白酶抑制劑E/M會導致細胞運動和侵襲能力的下調[39-40].
SLIT2是一個由細胞外基質分泌的與膜相關的糖蛋白.SLIT2/ROBO1是一對保守的配體與受體.在神經發育過程中,它們通過相互作用共同調節軸突和生長錐之間的關系.在神經膠質瘤細胞系和腫瘤組織中SLIT2啟動子經常通過啟動子甲基化下調.用去甲基化試劑Aza處理SLIT2甲基化的細胞能夠恢復SLIT2基因的表達.深層次的機制研究表明SLIT2主要通過SLIT2/ROBO1通路抑制CDC42?GTP,從而抑制膠質瘤細胞的遷移和侵襲[41-42].
DNA修復基因可以修復在DNA復制過程中發生在微衛星序列段的復制錯誤[43].如果這些基因出現問題,會使DNA修復出現問題,導致遺傳的不穩定性.目前已知一個在DNA損傷時被特異性激活錯配修復酶MLH1,會在膠質瘤中被甲基化沉默,而且研究表明MLH1啟動子甲基化是膠質瘤發生、發展以及克隆形成的早期事件[44].
DNA修復酶MGMT可以拮抗烷化劑的毒性作用.MGMT啟動子甲基化在膠質瘤患者體內十分常見且它是MGMT失活的一個關鍵機制.MGMT的表觀遺傳沉默對接受烷化劑化療的膠質瘤患者是有利的[45-48].
在膠質瘤中一些信號通路也被DNA甲基化調控.在原發性腦腫瘤和神經膠質瘤細胞系中,Ras相關結構域家族1A(RASSF1A)會被啟動子甲基化失活.在所有的甲基化的細胞系中用去Aza處理后RASSF1A又可以被重新表達.該基因主要通過MST1 或MOAP?1蛋白誘導細胞凋亡.研究表明,RASSF1A啟動子CpG島甲基化可能在神經膠質瘤與髓母細胞瘤的發病機制中發揮重要作用[49-52].
另一個N端RAS關聯域家族的基因,RAAS F10,在星形膠質細胞瘤中經常被甲基化.據報道,RASSF10在Ⅱ級和Ⅲ級星形細胞瘤以及Ⅳ級原發性膠質母細胞瘤中被甲基化的頻率高達67.5%,但在Ⅰ級星形細胞瘤和年齡匹配的正常對照腦組織樣本DNA中卻未被甲基化.在甲基化的神經膠質瘤細胞種可以通過Aza去甲基化恢復RASSF10表達.在Ⅱ級神經膠質瘤中,RASSF10的甲基化與生存率,總生存期是獨立相關的,并在其發展的早期階段就會出現甲基化.功能研究發現,在兩種RAS F10甲基化的膠質瘤細胞系中過表達RASSF10會抑制克隆形成,RASSF10敲除則會增加U87膠質瘤細胞增殖[53].
JAK/STAT途徑參與幾種類型癌癥的發生過程[54-55].細胞因子信號抑制3(SOCS3)可以通過抑制JAK/STAT信號通路而抑制腫瘤.報告發現,在原發性GBM中經常檢測到SOCS3啟動子甲基化,同時會伴隨著表皮生長因子受體(epidermal growth factor receptor,EGFR)擴增與高表達.SOCS3缺失會大大增加腫瘤細胞的浸潤能力,但對腫瘤細胞增殖無明顯影響.在膠質瘤中,SOCS3被甲基化后,可以激活STAT3和FAK,從而可以促進腦膠質瘤細胞的侵潤[56-57].在膠質瘤中SOCS1的過甲基化也有報道[56,58].將SOCS1重新導入膠質瘤細胞可增加其對輻射所致損傷的敏感性[58].
Wnt信號途徑的異常激活參與各種癌癥的發病過程,包括腦膠質瘤[59].有相當多的Wnt通路抑制劑被甲基化SFRP1,SFRP2和NKD2的甲基化有40%以上發生在原發性GBM中,而DKK1的甲基化有50%是發生在Ⅱ級GBM中.用去甲基化藥物處理SFRP1?,SFRP5?,DKK1?,DKK3?,NKD1?和NKD2高甲基化的U87?MG GBM細胞以后,它們的表達會增加[60].在神經膠質瘤中沉默Wnt信號的抑制劑導致Wnt途徑的激活,進而引起腫瘤再生長.
LATS2是一個抑癌基因,它通過破壞β連環蛋白/BCL9的相互作用來抑制致癌的Wnt/β?catenin介導的轉錄[61].在星形細胞瘤中LATS2經常被甲基化,但在正常的腦組織中則不會.LATS2在甲基化的星形細胞瘤中的mRNA水平要顯著明顯低于那些沒有甲基化的星形細胞瘤.在U251和SHG?44細胞系中檢測到LATS2甲基化,用Aza處理后LATS2表達恢復[62].LATS2的甲基化狀態為星形細胞瘤的診斷分析提供了重要的線索.
膠質瘤是一種最常見的原發性腦腫瘤,每年全世界大約有20萬患者被診斷患膠質瘤[63].現在很多可用的臨床治療手段如手術、放療和化療都取得了很大的進步,但GBM患者的中位生存期僅為14.6個月,能夠有5年存活期的概率<5%[3-4,64-65].了解膠質瘤的分子機制對于尋找新的治療策略至關重要.識別有用的生物標志物將大大有利于膠質瘤患者的早期診斷及提高治療效率.在膠質瘤中許多抑癌基因的甲基化都與患者的預后密切相關(表1).

表1 在膠質瘤里啟動子甲基化后沉默的抑癌基因的總結
DNA異常甲基化在癌癥診斷上主要有以下三種應用方式:①作為檢測癌細胞或檢測癌細胞DNA;②預測預后;③預測治療效果[66].DNA樣本比RNA樣品更穩定,檢測啟動子甲基化的生物標記物更有優勢.通常來說,用于臨床檢驗的樣品,如血液、尿、痰、唾液和糞便中,含有的腫瘤細胞DNA樣品是很少量的.由于DNA甲基化檢測技術的發展,即使含量很少,這些表觀遺傳學的標記物也很容易被檢測到[66].且臨床上已經能夠很好的檢測膠質瘤患者血清樣品中MGMT和p16INK4a基因的啟動子甲基化,以用于治療指導[67-69].
腫瘤抑制因子啟動子的甲基化也與膠質瘤患者對藥物和放療的敏感性有關[70].例如,重新激活膠質瘤中已經沉默的SOCS1,會導致通過抑制MAPK來增加膠質瘤對放療的敏感性[58].病毒介導的BEX1 或BEX2的再表達也可以增加腫瘤細胞對化療的敏感性,誘導細胞凋亡[71].這些基因甲基化的狀態還可以為患者特異性治療提供新的思路.眾所周知的例子是MGMT啟動子甲基化和DNA烷化劑之間的關系.DNA烷化劑的機理是在DNA鄰近位置之間形成交聯,從而抑制DNA的復制殺死細胞.MGMT能夠直接和特異性除去由這些烷基化劑在鳥嘌呤脫氧核糖核苷酸O6位置上形成的細胞毒性烷基加合物.激活的MGMT會抑制烷化劑的殺傷效率[72].因為在惡性腫瘤中MGMT基因很少缺失或突變,所以MGMT的表觀遺傳學沉默可以做為臨床放療和烷化劑治療應答的一個生物預測標記.在若干臨床研究中,MGMT啟動子甲基化的預測價值已經被確認,并且在針對經由放療和烷基化劑治療的膠質瘤患者的研究中發現,MGMT甲基化水平與顯著增長的生存期密切相關.
總之,遺傳學和表觀遺傳學的改變對神經膠質瘤的發生都起到了重要作用.抑癌基因的沉默后將無法抑制膠質瘤的發生和發展.目前已經將抑癌基因啟動子的甲基化作為生物記物,這將有助于膠質瘤的診斷、預后與治療.在本研究中我們總結了最新鑒定的甲基化沉默的抑癌基因,還將進一步研究它們的分子機制,以加深我們對這些生物標記分子的認識與了解并將它們更好地應用在臨床上.
【參考文獻】
[1]Tu Y,Gao X,Li G,et al.MicroRNA?218 inhibits glioma invasion,migration,proliferation,and cancer stem?like cell self?renewal by targeting the polycomb group gene Bmi1[J].Cancer Res,2013,73(19):6046-6055.
[2]Kaba SE,Kyritsis AP.Recognition and management of gliomas[J].Drugs,1997,53(2):235-244.
[3]Louis DN.Molecular pathology of malignant gliomas[J].Annu Rev Pathol,2006,1:97-117.
[4]Stupp R,Mason WP,van den Bent MJ,et al.Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J].N Engl J Med,2005,352(10):987-996.
[5]Wang J,Su HK,Zhao HF,et al.Progress in the application of molecular biomarkers in gliomas[J].Biochem Biophys Res Com?mun,2015,465(1):1-4.
[6]Cheng Y,Geng H,Cheng SH,et al.KRAB zinc finger protein ZNF382 is a proapoptotic tumor suppressor that represses multiple oncogenes and is commonly silenced in multiple carcinomas[J].Cancer Res,2010,70(16):6516-6526.
[7]Coleman WB,Tsongalis GJ.Molecular mechanisms of human carci?nogenesis[J].EXS,2006(96):321-349.
[8]Jones PA,Baylin SB.The fundamental role of epigenetic events in cancer[J].Nat Rev Genet,2002,3(6):415-428.
[9]Shu XS,Li L,Ji M,et al.FEZF2,a novel 3p14 tumor suppressor gene,represses oncogene EZH2 and MDM2 expression and is frequently methylated in nasopharyngeal carcinoma[J].Carcinogene?sis,2013,34(9):1984-1993.
[10]Cheng Y,Liang P,Geng H,et al.A novel 19q13 nucleolar zinc finger protein suppresses tumor cell growth through inhibiting ribo?some biogenesis and inducing apoptosis but is frequently silenced in multiple carcinomas[J].Mol Cancer Res,2012,10(7):925-936.
[11]Wang S,Cheng Y,Du W,et al.Zinc?finger protein 545 is a novel tumour suppressor that acts by inhibiting ribosomal RNA transcription in gastric cancer[J].Gut,2013,62(6):833-841.
[12]Fu L,Dong SS,Xie YW,et al.Down-regulation of tyrosine amin?otransferase at a frequently deleted region 16q22 contributes to the pathogenesis of hepatocellular carcinoma[J].Hepatology,2010,51(5):1624-1634.
[13]Yu J,Liang QY,Wang J,et al.Zinc?finger protein 331,a novel putative tumor suppressor,suppresses growth and invasiveness of gastric cancer[J].Oncogene,2013,32(3):307-317.
[14]He Z,Li B.Recent progress in genetic and epigenetic profile of diffuse gastric cancer[J].Cancer Transl Med,2015,1(3):80-93.
[15]Qu Y,Dang S,Hou P.Gene methylation in gastric cancer[J].Clin Chim Acta,2013,424:53-65.
[16]Watanabe T,Katayama Y,Yoshino A,et al.Aberrant hypermethyl?ation of p14ARF and O6?methylguanine?DNA methyltransferase genes in astrocytoma progression[J].Brain Pathol,2007,17(1):5-10.
[17]Chin L,Pomerantz J,DePinho RA.The INK4a/ARF tumor suppres?sor:one gene?two products?two pathways[J].Trends Biochem Sci,1998,23(8):291-296.
[18]Little M,Wainwright B.Methylation and p16:suppressing the sup?pressor[J].Nat Med,1995,1(7):633-634.
[19]Arifin MT,Hama S,Kajiwara Y,et al.Cytoplasmic,but not nuclear,p16 expression may signal poor prognosis in high?grade astrocytomas[J].J Neurooncol,2006,77(3):273-277.
[20]Fueyo J,Gomez?Manzano C,Bruner JM,et al.Hypermethylation of the CpG island of p16/CDKN2 correlates with gene inactivation in gliomas[J].Oncogene,1996,13(8):1615-1619.
[21]Costello JF,Berger MS,Huang HS,et al.Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensa?tion[J].Cancer Res,1996,56(10):2405-2410.
[22]Gonzalez?Gomez P,Bello MJ,Arjona D,et al.Promoter hypermeth?ylation of multiple genes in astrocytic gliomas[J].Int J Oncol,2003,22(3):601-608.
[23]Berdasco M,Ropero S,Setien F,et al.Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma[J].Proc Natl Acad Sci U S A,2009,106(51):21830-21835.
[24]Veeriah S,Brennan C,Meng S,et al.The tyrosine phosphatase PT?PRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers[J].Proc Natl Acad Sci U S A,2009,106(23):9435-9440.
[25]Wei D,Gong W,Kanai M,et al.Drastic down?regulation of Krüppel?like factor 4 expression is critical in human gastric cancer development and progression[J].Cancer Res,2005,65(7):2746-2754.
[26]Li L,Qin X,Shi M,et al.Regulation of histone acetylation by NDRG2 in glioma cells[J].J Neurooncol,2012,106(3):485-492.
[27]Nakahara Y,Northcott PA,Li M,et al.Genetic and epigenetic inactivation of Kruppel?like factor 4 in medulloblastoma[J].Neopla?sia,2010,12(1):20-27.
[28]Vermeulen K,Van Bockstaele DR,Berneman ZN.Apoptosis:mech?anisms and relevance in cancer[J].Ann Hematol,2005,84(10):627-639.
[29]Darnay BG,Besse A,Poblenz AT,et al.TRAFs in RANK signaling[J].Adv Exp Med Biol,2007,597:152-159.
[30]von dem Knesebeck A,Felsberg J,Waha A,et al.RANK(TN?FRSF11A)is epigenetically inactivated and induces apoptosis in gliomas[J].Neoplasia,2012,14(6):526-534.
[31]Wu X,Li Y,Wan X,et al.Down?regulation of neogenin accelerated glioma progression through promoter Methylation and its overexpres?sion in SHG?44 Induced Apoptosis[J].PLoS One,2012,7(5):e38074.
[32]Kadowaki M,Yoshioka H,Kamitani H,et al.DNA methylation?me?diated silencing of nonsteroidal anti?inflammatory drug?activated gene (NAG?1/GDF15)in glioma cell lines[J].Int J Cancer,2012,130(2):267-277.
[33]Zhang Z,Wu L,Wang J,et al.Opposing effects of PI3K/Akt and Smad?dependent signaling pathways in NAG?1?induced glioblastoma cell apoptosis[J].PLoS One,2014,9(4):e96283.
[34]Friedl P,Wolf K.Tumour?cell invasion and migration:diversity and escape mechanisms[J].Nat Rev Cancer,2003,3(5):362-374.
[35]Costa AM,Pinto F,Martinho O,et al.Silencing of the tumor sup?pressor gene WNK2 is associated with upregulation of MMP2 and JNK in gliomas[J].Oncotarget,2015,6(3):1422-1434.
[36]Moniz S,Martinho O,Pinto F,et al.Loss of WNK2 expression by promoter gene methylation occurs in adult gliomas and triggers Rac1?mediated tumour cell invasiveness[J].Hum Mol Genet,2013,22(1):84-95.
[37]Cogdell D,Chung W,Liu Y,et al.Tumor?associated methylation of the putative tumor suppressor AJAP1 gene and association between decreased AJAP1 expression and shorter survival in patients with glioma[J].Chin J Cancer,2011,30(4):247-253.
[38]Zeng L,Fee BE,Rivas MV,et al.Adherens junctional associated protein?1:a novel 1p36 tumor suppressor candidate in gliomas (Review)[J].Int J Oncol,2014,45(1):13-17.
[39]Qiu J,Ai L,Ramachandran C,et al.Invasion suppressor cystatin E/M(CST6):high?level cell type?specific expression in normal brain and epigenetic silencing in gliomas[J].Lab Invest,2008,88(9):910-925.
[40]Kim TY,Zhong S,Fields CR,et al.Epigenomic profiling reveals novel and frequent targets of aberrant DNA methylation?mediated silencing in malignant glioma[J].Cancer Res,2006,66(15):7490-7501.
[41]Dallol A,Krex D,Hesson L,et al.Frequent epigenetic inactivation of the SLIT2 gene in gliomas[J].Oncogene,2003,22(29):4611-4616.
[42]Yiin JJ,Hu B,Jarzynka MJ,et al.Slit2 inhibits glioma cell invasion in the brain by suppression of Cdc42 activity[J].Neuro Oncol,2009,11(6):779-789.
[43]Duval A,Hamelin R.Genetic instability in human mismatch repair deficient cancers[J].Ann Genet,2002,45(2):71-75.
[44]G?m?ri E,Pál J,Mészáros I,et al.Epigenetic inactivation of the hMLH1 gene in progression of gliomas[J].Diagn Mol Pathol,2007,16(2):104-107.
[45]Berghoff AS,Hainfellner JA,Marosi C,et al.Assessing MGMT methylation status and its current impact on treatment in glioblastoma[J].CNS Oncol,2015,4(1):47-52.
[46]Weller M,Stupp R,Reifenberger G,et al.MGMT promoter methyl?ation in malignant gliomas:ready for personalized medicine[J].Nat Rev Neurol,2010,6(1):39-51.
[47]Kanemoto M,Shirahata M,Nakauma A,et al.Prognostic prediction of glioblastoma by quantitative assessment of the methylation status of the entire MGMT promoter region[J].BMC Cancer,2014,14:641.
[48]Weller M.Assessing the MGMT status in glioblastoma:one step forward,two steps back[J].Neuro Oncol,2013,15(3):253-254.
[49]Horiguchi K,Tomizawa Y,Tosaka M,et al.Epigenetic inactivation of RASSF1A candidate tumor suppressor gene at 3p21.3 in brain tumors[J].Oncogene,2003,22(49):7862-7865.
[50]Gao Y,Guan M,Su B,et al.Hypermethylation of the RASSF1A gene in gliomas[J].Clin Chim Acta,2004,349(1-2):173-179.
[51]Hesson L,Bièche I,Krex D,et al.Frequent epigenetic inactivation of RASSF1A and BLU genes located within the critical 3p21.3 region in gliomas[J].Oncogene,2004,23(13):2408-2419.
[52]Hesson LB,Cooper WN,Latif F.The role of RASSF1A methylation in cancer[J].Dis Markers,2007,23(1-2):73-87.
[53]Hill VK,Underhill?Day N,Krex D,et al.Epigenetic inactivation of the RASSF10 candidate tumor suppressor gene is a frequent and an early event in gliomagenesis[J].Oncogene,2011,30(8):978-989.
[54]Bromberg JF,Wrzeszczynska MH,Devgan G,et al.Stat3 as an on?cogene[J].Cell,1999,98(3):295-303.
[55]Wen Z,Zhong Z,Darnell JE Jr.Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation[J].Cell,1995,82(2):241-250.
[56]Martini M,Pallini R,Luongo G,et al.Prognostic relevance of SOCS3 hypermethylation in patients with glioblastoma multiforme[J].Int J Cancer,2008,123(12):2955-2560.
[57]Lindemann C,Hackmann O,Delic S,et al.SOCS3 promoter methy?lation is mutually exclusive to EGFR amplification in gliomas and promotes glioma cell invasion through STAT3 and FAK activation[J].Acta Neuropathol,2011,122(2):241-51.
[58]Zhou H,Miki R,Eeva M,et al.Reciprocal regulation of SOCS 1 and SOCS3 enhances resistance to ionizing radiation in glioblastoma multiforme[J].Clin Cancer Res,2007,13(8):2344-2353.
[59]Zhang K,Zhang J,Han L,et al.Wnt/beta?catenin signaling in glioma[J].J Neuroimmune Pharmacol,2012,7(4):740-749.
[60]G?tze S,Wolter M,Reifenberger G,et al.Frequent promoter hyper?methylation of Wnt pathway inhibitor genes in malignant astrocytic gliomas[J].Int J Cancer,2010,126(11):2584-2593.
[61]Li J,Chen X,Ding X,et al.LATS2 suppresses oncogenic Wnt sig?naling by disrupting β?catenin/BCL9 interaction[J].Cell Rep,2013,5(6):1650-1663.
[62]Jiang Z,Li X,Hu J,et al.Promoter hypermethylation?mediated down?regulation of LATS1 and LATS2 in human astrocytoma[J].Neurosci Res,2006,56(4):450-458.
[63]Parkin DM,Bray F,Ferlay J,et al.Global cancer statistics,2002[J].CA Cancer J Clin,2005,55(2):74-108.
[64]Kondo Y,Katsushima K,Ohka F,et al.Epigenetic dysregulation in glioma[J].Cancer Sci,2014,105(4):363-369.
[65]Wen PY,Kesari S.Malignant gliomas in adults[J].N Engl J Med,2008,359(5):492-507.
[66]Hu XT,He C.Recent progress in the study of methylated tumor suppressor genes in gastric cancer[J].Chin J Cancer,2013,32(1):31-41.
[67]Balańa C,Carrato C,Ramírez JL,et al.Tumour and serum MGMT promoter methylation and protein expression in glioblastoma patients[J].Clin Transl Oncol,2011,13(9):677-685.
[68]Liu BL,Cheng JX,Zhang W,et al.Quantitative detection of multi?ple gene promoter hypermethylation in tumor tissue,serum,and cerebrospinal fluid predicts prognosis of malignant gliomas[J].Neu?ro Oncol,2010,12(6):540-548.
[69]Lavon I,Refael M,Zelikovitch B,et al.Serum DNA can define tumor?specific genetic and epigenetic markers in gliomas of various grades[J].Neuro Oncol,2010,12(2):173-180.
[70]Natsume A,Kondo Y,Ito M,et al.Epigenetic aberrations and ther?apeutic implications in gliomas[J].Cancer Sci,2010,101(6):1331-1336.
[71]Foltz G,Ryu GY,Yoon JG,et al.Genome?wide analysis of epige?netic silencing identifies BEX1 and BEX2 as candidate tumor sup?pressor genes in malignant glioma[J].Cancer Res,2006,66(13):6665-6674.
[72]Day RS 3rd,Ziolkowski CH,Scudiero DA,et al.Defective repair of alkylated DNA by human tumour and SV40?transformed human cell strains[J].Nature,1980,288(5792):724-727.
[73]Sibin MK,Bhat DI,Narasingarao KV,et al.CDKN2A(p16)mR?NA decreased expression is a marker of poor prognosis in malignant high?grade glioma[J].Tumour Biol,2015,36(10):7607-7614.
[74]Zhou B,Tang Z,Deng Y,et al.Tumor suppressor candidate gene,NDRG2 is frequently inactivated in human glioblastoma multiforme[J].Mol Med Rep,2014,10(2):891-896.
[75]Deng Y,Yao L,Chau L,et al.N?Myc downstream?regulated gene 2 (NDRG2)inhibits glioblastoma cell proliferation[J].Int J Cancer,2003,106(3):342-347.
[76]Waha A,Felsberg J,Hartmann W,et al.Epigenetic downregulation of mitogen?activated protein kinase phosphatase MKP?2 relieves its growth suppressive activity in glioma cells[J].Cancer Res,2010,70(4):1689-1699.
[77]Yang Y,Huang JQ,Zhang X,et al.MiR?129?2 functions as a tumor suppressor in glioma cells by targeting HMGB1 and is down?regulated by DNA methylation[J].Mol Cell Biochem,2015,404(1-2):229-239.
[78]Dong X,Deng Q,Nie X,et al.Downregulation of HTATIP2 expres?sion is associated with promoter methylation and poor prognosis in glioma[J].Exp Mol Pathol,2015,98(2):192-199.
[79]Chu SH,Feng DF,Ma YB,et al.Promoter methylation and down?regulation of SLC22A18 are associated with the development and pro?gression of human glioma[J].J Transl Med,2011,9:156.
[80]Chu SH,Ma YB,Feng DF,et al.Effect of 5?Aza?2’?deoxycytidine on SLC22A18 in glioma U251 cells[J].Mol Med Rep,2012,5(1):138-141.
[81]Alaminos M,Dávalos V,Ropero S,et al.EMP3,a myelin?related gene located in the critical 19q13.3 region,is epigenetically silenced and exhibits features of a candidate tumor suppressor in glioma and neuroblastoma[J].Cancer Res,2005,65(7):2565-2571.
[82]Kunitz A,Wolter M,van den Boom J,et al.DNA hypermethylation and aberrant expression of the EMP3 gene at 19q13.3 in Human Gliomas[J].Brain Pathol,2007,17(4):363-370.
[83]Watanabe T,Huang H,Nakamura M,et al.Methylation of the p73 gene in gliomas[J].Acta Neuropathol,2002,104(4):357-362.
[84]Jancalek R.The role of the TP73 gene and its transcripts in neuro?oncology[J].Br J Neurosurg,2014,28(5):598-605.
[85]Chilukamarri L,Hancock AL,Malik S,et al.Hypomethylation and aberrant expression of the glioma pathogenesis?related 1 gene in Wilms tumors[J].Neoplasia,2007,9(11):970-978.
[86]Li L,Abdel Fattah E,Cao G,et al.Glioma pathogenesis?related protein 1 exerts tumor suppressor activities through proapoptotic reac?tive oxygen species?c?Jun?NH2 kinase signaling[J].Cancer Res,2008,68(2):434-443.
[87]Mueller W,Nutt CL,Ehrich M,et al.Downregulation of RUNX3 and TES by hypermethylation in glioblastoma[J].Oncogene,2007,26(4):583-593.
[88]Bai Y,Zhang QG,Wang XH.Downregulation of TES by hypermeth?ylation in glioblastoma reduces cell apoptosis and predicts poor clini?cal outcome[J].Eur J Med Res,2014,19:66.
[89]Karakoula K,Jacques TS,Phipps KP,et al.Epigenetic genome?wide analysis identifies BEX1 as a candidate tumour suppressor gene in paediatric intracranial ependymoma[J].Cancer Lett,2014,346(1):34-44.
[90]Zhou X,Meng Q,Xu X,et al.Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c?Jun NH2?terminal kinase pathway[J].Biochem Biophys Res Commun,2012,427(3):574-580.
[91]Zhou X,Xu X,Meng Q,et al.Bex2 is critical for migration and invasion in malignant glioma cells[J].J Mol Neurosci,2013,50(1):78-87.
[92]Xu Y,Li WL,Fu L,et al.Slit2/Robo1 signaling in glioma migra?tion and invasion.Neurosci Bull,2010,26(6):474-478.
[93]Tivnan A,Zhao J,Johns TG,et al.The tumor suppressor microR?NA,miR?124a,is regulated by epigenetic silencing and by the tran?scriptional factor,REST in glioblastoma[J].Tumour Biol,2014,35(2):1459-1465.
[94]Fowler A,Thomson D,Giles K,et al.miR?124a is frequently down?regulated in glioblastoma and is involved in migration and invasion[J].Eur J Cancer,2011,47(6):953-963.
[95]Lu SH,Jiang XJ,Xiao GL,et al.miR?124a restoration inhibits glioma cell proliferation and invasion by suppressing IQGAP1 andβ?catenin[J].Oncol Rep,2014,32(5):2104-2110.
[97]Gessler F,Voss V,Seifert V,et al.Knockdown of TFPI?2 promotes migration and invasion of glioma cells[J].Neurosci Lett,2011,497(1):49-54.
[98]George J,Gondi CS,Dinh DH,et al.Restoration of tissue factor pathway inhibitor?2 in a human glioblastoma cell line triggers caspase?mediated pathway and apoptosis[J].Clin Cancer Res,2007,13(12):3507-3517.
[99]Bertrand KC,Mack SC,Northcott PA,et al.PCDH10 is a candi?date tumour suppressor gene in medulloblastoma[J].Childs Nerv Syst,2011,27(8):1243-1249.
[100]Echizen K,Nakada M,Hayashi T,et al.PCDH10 is required for the tumorigenicity of glioblastoma cells[J].Biochem Biophys Res Commun,2014,444(1):13-18.
[101]Mei PJ,Bai J,Liu H,et al.RUNX3 expression is lost in glioma and its restoration causes drastic suppression of tumor invasion and migration[J].J Cancer Res Clin Oncol,2011,137(12):1823-1830.
[102]Levesley J,Lusher ME,Lindsey JC,et al.RASSF1A and the BH3?only mimetic ABT?737 promote apoptosis in pediatric medulloblas?toma cell lines[J].Neuro Oncol,2011,13(12):1265-1276.
[103]Kongkham PN,Northcott PA,Croul SE,et al.The SFRP family of WNT inhibitors function as novel tumor suppressor genes epigeneti?cally silenced in medulloblastoma[J].Oncogene,2010,29(20):3017-3024.
[104]Schiefer L,Visweswaran M,Perumal V,et al.Epigenetic regula?tion of the secreted frizzled?related protein family in human glioblas?toma multiforme[J].Cancer Gene Ther,2014,21(7):297-303.
[105]Vibhakar R,Foltz G,Yoon JG,et al.Dickkopf?1 is an epigenetically silenced candidate tumor suppressor gene in medulloblastoma[J].Neuro Oncol,2007,9(2):135-144.
[106]Mizobuchi Y,Matsuzaki K,Kuwayama K,et al.REIC/Dkk?3 in?duces cell death in human malignant glioma[J].Neuro Oncol,2008,10(3):244-253.
·基礎與轉化醫學·
通訊作者:張永生.教授,主任醫師,院長.E?mail:zhangys@fmmu.edu.cn;成迎端.博士.E?mail:cyd116@hotmail.com
作者簡介:涂艷陽.E?mail:ayonst@qq.com
收稿日期:2016-01-05;接受日期:2016-01-22
文章編號:2095?6894(2016)02?01?07
【中圖分類號】R730.264
【文獻標識碼】A