陸享飛


新課程主張把學生置于教學的出發點和核心地位.教師應該以學生的心里發展為主線,以學生的眼界去設計問題.
在課堂上學生的主體地位得到充分的尊重和具體的落實,學生開始以主動的參與和積極的思維活動經歷課程的過程,師生是在一起對話,課前教師預設的認識與見解、觀點與答案往往在經歷了生動課堂之后被拓展得很寬,被挖掘得很深.教師只要抓住機會,就會有很多意想不到的生成.下面就結合教學的一個案例,談談本人在這方面的探究.
案例 求函數h(x)=x-3+1-x2的值域.
這是(“函數與導數” 一課中的一道例題),是聽課時收集到的一個題目.
預 設
師:同學們本題該怎么做呢?求值域一定要關注定義域,可本題沒告訴我們定義域?
生:本題有個隱含的定義域是1-x2≥0即-1≤x≤1.
點評:積極引導學生參與到例題講評中,不直接給結論,盡量多讓學生思考發言.讓學生自主參與教學全過程,培養了學生的自主學習能力.
師:很好.在定義域的前提下我們就可以構造f(x)=x-3+1-x2(-1≤x≤1).
而后利用導數求解.(師生共同完成例題解答)
本例是課堂作為例題進行講解,結束后正要小結解題思想,又有同學發言了
點評:在平時的教學中遇到學生與我們有不同想法時,要會善于傾聽學生的想法,還課堂給學生.培養了學生的創新精神和實踐能力,使他們體會到做學問的快樂. 課堂上充分發揮學生的主體作用的同時,教師的點撥引導也起到了關鍵的作用.要注意調動他們的學習主動性,引導他們獨立思考、積極探索,生動活潑地學習,自覺地掌握科學知識和提高分析問題和解決問題的能力.
生甲:老師可以用三角函數.
師:你怎么會想到用三角函數?(老師已經看出他想用三角換元)
生乙:1-x2的結構特征也會想到圓的方程呀?
師:(思考)如何構造圓,要怎么解決這問題呢?
點評 老師并沒急于請生乙回答.因為這時學生的解題熱情已經被調動起來了,他們都在積極嘗試著解決問題.為學生創設了良好的思維情景,開拓學生的解題思路,課堂上充分發揮學生的主體作用的同時,要注意調動他們的學習主動性,引導他們獨立思考、積極探索,生動活潑地學習,自覺地掌握科學知識和提高分析問題和解決問題的能力.
師:大家有沒有找到思路?我們現在請生乙說說他的解法.
生乙:構造y=1-x2,用點到直線的距離解決,具體的怎么解我不清楚.
師:安慰說沒關系,你這是個解題方向,我們來共同探究.
師:(總結)在平時解題時中,我們不能僅滿足于一種解法,有時間可以對題目做些探究,會有意想不到的效果.這題同學們課后還可以再做些思考.
點評:使學生親自參與到解題的實踐中去,課堂氣氛活躍,教學效果很好.提高了學生學習興趣,拓展了學生的思維能力,促進了學生智力和能力的提高.
教學反思
構造法是解決函數問題的重要方法,教師教學中要注意引導學生領悟.學會根據題目的特征,對問題深入分析,善于變換思維角度,運用轉化思想,化歸的方法將數學問題由一種形式向另一種形式變換,尋求解題的切入點,得到簡潔的解題途徑,有效的解題方法.
在一個完整的教學過程中,如果只有預設而沒有生成,學生的主體沒有被重視,是一種灌輸學習;如果有了預設,并在預設中有所生成,就說明師生間有了較好的互動,學生的主體性被重視;如果在預設生成的基礎上,又有了許多非預設生成,說明學生學習積極性得到充分發揮,他們在主動學習,這樣的學習是富有生命活力的.