999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

胡椒堿生物合成機理研究進展

2016-05-30 07:04:05胡麗松鄔華松范睿伍寶朵郝朝運
熱帶作物學報 2016年5期

胡麗松 鄔華松 范睿 伍寶朵 郝朝運

摘 要 以胡椒堿生物合成的前體為主線,結合模式植物生物堿生物合成的研究成果,從胡椒堿合成前體鑒定、莽草酸代謝途徑、賴氨酸代謝途徑3個方面概述了胡椒堿生物合成機理的研究進展,并對胡椒中胡椒堿生物合成調控的研究進行了討論,提出了提高胡椒堿合成效率及含量的初步設想。

關鍵詞 胡椒堿;生物合成;賴氨酸代謝;莽草酸途徑

中圖分類號 TQ464;TS201.2 文獻標識碼 A

Abstract Piperine is the main quality trait and functional substance in Piper spp. Due to its activity in promoting digestion, anti-inflammatory, decreasing blood-lipid and anti-cancer etc., more and more research was focused on the biosynthesis mechanism of piperine. In the present paper, based on the recent research progress in model plants, the biosynthesis of piperine was reviewed, mainly including the precursor identification, lysine metabolism and shikimic acid pathway. Furthermore, some suggestions for piperine biosynthesis control were discussed.

Key words Piperine; Biosynthesis; Lysine metabolism; Shikimic acid pathway

doi 10.3969/j.issn.1000-2561.2016.05.031

胡椒(Piper nigrum L.)是世界上古老而著名的香料作物,素有“香料之王”的美譽,用途廣泛,經濟價值高。在醫學領域,胡椒被用作健胃劑、鎮痛劑、解毒劑等[1-4]。在食品工業中,胡椒常被用作防腐劑、保鮮劑等[5-6]。胡椒中化學成分包括胡椒堿、揮發油、酚類化合物和微量元素等,胡椒堿是其中含量最大、活性最高的生物堿[7]。胡椒堿既承載著胡椒口感熱辣和促進食欲的兩大傳統功能,同時還有抗炎癥、抗抑郁、提高藥效、降血脂、抑制腫瘤等多種功能[2,7-12]。因此,胡椒堿被公認為是胡椒的主要功能物質以及衡量胡椒品質高低的主要因子[7]。

研究結果表明,胡椒堿是賴氨酸源的生物堿,同時屬于苯丙素類衍生物。苯丙素類化合物是廣泛存在植物體內的一類苯環與3個直鏈碳連接(C6-C3基團)構成的天然化合物,一般具有苯環結構,可根據C6-C3基團的數目,分為苯丙素、木脂素、香豆素三大類,而每一大類又可分出多個衍生物[13-16]。在生物合成上,苯丙素類化合物多數由莽草酸通過苯丙氨酸和酪氨酸等芳香氨基酸,經脫氨、羥基化等一系列反應形成[17-20]。植物體內賴氨酸源的生物堿主要包括吲哚里西啶類、喹嗪烷類、哌啶類三大類生物堿。這三類生物堿因其氮原子來源于同一個氨基酸,碳原子骨架構成比較保守,而被稱為“True alkaloids”,在合成的初期所經歷的賴氨酸代謝也較為保守,在模式植物中賴氨酸代謝的中間產物、參與催化反應的關鍵基因等相關研究比較清楚[21-23]。

不同作物的生物堿種類及構成各不相同。胡椒堿屬于哌啶類生物堿,主要存在于胡椒科植物中,目前,關于胡椒中胡椒堿生物合成的機理研究仍然滯后。本研究將參考模式生物中苯丙素和賴氨酸代謝的研究成果,概述胡椒堿生物合成機制,為胡椒育種、胡椒堿生物工程利用提供參考。

1 胡椒堿的發現及一般性質

胡椒堿為胡椒科植物特有的一種生物堿,存在于多種胡椒屬植物中,如胡椒(Piper nigrum)、蓽茇(Piper longum)、幾內亞胡椒(Piper guineense)等植物的果實和根都發現含胡椒堿[21,24]。1918年,Oersted首次從胡椒果實中分離出一種具有辛辣味的黃色結晶物-胡椒堿(Piperine),分子式為C17H19NO3,結構式見圖1[25]。

胡椒堿是一種不溶于水的淡黃色結晶物質,熔點128~133 ℃,溶于乙酸、苯、乙醇和氯仿。在酸性介質下胡椒堿可穩定存在,但在堿性環境中,胡椒堿極不穩定會水解為六氫嘧啶和胡椒堿酸。另外,胡椒堿對光敏感,在自然光照射條件下,胡椒堿易發生異構化反應,生成3種同分異構體: chavicine(異胡椒堿)、piperanine(哌嗪)和piperettine(胡椒亭)(圖1)。與胡椒堿相比,其異構體的辛辣味相對比較微弱[26-28]。

2 胡椒堿生物合成途徑

2.1 胡椒堿合成前體

為鑒定胡椒堿生物合成的前體物質,Georg G等開展了大量的工作[12,27,29-32]。1987年,胡椒酰胺輔酶A(Piperoyl-coenzyme A)通過體外化學方法成功合成,使得通過體外生物化學的方法研究胡椒堿合成機理成為可能[30]。1990年,Geisler等[29]從胡椒的根尖發現了能催化胡椒堿合成的胡椒堿合成酶(piperidine piperoyltransferase; EC 2.3.1.145),通過比較催化不同底物反應生成胡椒堿的效率,確定了胡椒酰胺輔酶A與六氫吡啶(piperidine)是胡椒堿生物合成的直接前體(圖2)。因此,根據胡椒堿生物合成2個前體物質的特征,胡椒堿又名1-胡椒酰哌啶(1-Piperyl piperidine)。胡椒堿合成前體的鑒定為胡椒堿生物合成研究奠定了重要基礎,后續的工作主要圍繞胡椒酰胺輔酶A和六氫吡啶兩個直接前體的代謝及調控等研究展開。

2.2 胡椒酰胺輔酶A生物合成的莽草酸途徑

胡椒酰胺輔酶A合成起源于莽草酸途徑[30,32]。莽草酸途徑的苯丙素類(phenylpropanoids)中間產物是大多數植物芳香類物質的合成前體,如反肉桂酸(trans-cinnamic acid)、咖啡酸(caffeic acid)、阿魏酸(ferulic acid)等,不同的苯丙素所衍生的芳香物質各不相同[18-20,33]。莽草酸途徑起始于糖代謝生成的磷酸烯醇丙酮酸(phosphoenolpyruvic acid, PEP)與D-磷酸赤蘚糖(D-erythrose-4-phosphate, E4P),兩者在合成酶催化下反應生成3-脫氧-阿拉伯庚酮糖酸-7-磷酸(3-deoxy-D-arabino-heptulosonic acid 7-phosphate, DAHP)[34-37]。DAHP通過經去磷酸化、環化、脫水一些列酶促反應生成脫氫奎尼酸(3-dehydroquinic acid, DHQ)、脫氫莽草酸(3-dehydroshikimic acid)、莽草酸(shikimic acid)[20,38-42]。隨后,莽草酸在激酶的催化下發生磷酸化反應,生成3-磷酸-莽草酸,3-磷酸-莽草酸與磷酸烯醇丙酮酸反應生成5-烯醇丙酮酰莽草酸-3-磷酸(5-enlpyruvylshikimic acid 3-phosphate, EPSP),EPSP通過去磷酸反應生成分支酸(chorismic acid)(圖3)[18-19,33,43-46]。

分支酸的合成是莽草酸途徑的一個重要樞紐節點,在這個節點上莽草酸途徑產生了兩條不同的分支。(1)分支酸經鄰氨基苯甲酸合成酶催化反應生成對羥基苯丙酮酸,從而進入色氨酸合成途徑[47-48];(2)分支酸在變位酶的作用下生成預苯酸(Prephenic acid),進入苯基丙氨酸、酪氨酸合成途徑,胡椒酰胺輔酶A合成的前體香豆酸來自這一支路[49]。預苯酸在轉氨酶的作用下生成前酪氨酸(arogenic acid),前酪氨酸可在脫氫酶的作用下生成酪氨酸,也可再經脫水反應生成苯丙氨酸(phenylalanine)[50-52]。苯基丙氨酸在苯丙氨酸氨基裂解酶的作用下脫掉氨基生成肉桂酸(cinnamic acid),肉桂酸在羥化酶的作用下生成香豆酸,此外,酪氨酸也可以通過脫氨基反應生成香豆酸,最終進入胡椒酰胺輔酶A合成途徑(圖4)[53-57]。

胡椒酰胺輔酶A的合成以香豆酸(coumaric acid)為起始底物。香豆酸通過3-羥化反應生成咖啡酸,咖啡酸被甲基化后生成阿魏酸,阿魏酸的羥基再經氧化反應生成松柏醇(coniferyl alcohol)[58-60]。松柏醇通過輔酶A連接、基團修飾、環化作用后生成基本的胡椒酰胺輔酶A骨架[61-64]。胡椒酰胺輔酶A骨架再通過Claisen延伸(克萊森縮合反應)、脫水反應后最終形成胡椒堿合成的直接前體:胡椒酰胺輔酶A(圖5)。

2.3 六氫吡啶生物合成的賴氨酸代謝途徑

六氫吡啶的合成起源于賴氨酸,其生物活性、代謝路徑已在模式生物中開展大量研究。首先,賴氨酸在脫羧酶的作用下生成戊撐二胺,戊撐二胺經氧化、環化、脫水反應生成四氫吡啶,四氫吡啶經還原反應最終生成六氫吡啶[21]。六氫吡啶是很多生物堿合成的前體物質,如與煙酸反應則生成尼古丁,與乙酰乙酰輔酶A反應則生成石榴堿,與胡椒酰胺輔酶A反應則生成胡椒堿。這類物質統稱為哌啶類生物堿[65]。

模式植物的研究結果表明,哌啶類生物堿的合成并不是賴氨酸代謝的唯一途徑,其代謝主要有3條路徑:第一,賴氨酸在氧化酶的作用下生成ε-醛賴氨酸,然后進入吲哚里西啶生物堿合成途徑,如苦馬豆素和流涎素的生物合成都是通過這一反應實現,此反應廣泛存在于植物、動物、微生物中[66-68]。第二,賴氨酸在脫羧酶的作用下生成戊撐二胺。戊撐二胺可以和丙酮酸鹽反應生成氧代鷹爪豆堿,為喹嗪烷類生物堿的合成提供底物。羽扇豆寧、金雀花堿都經由這一支路合成[69-72]。第三,戊撐二胺經氧化、環化、脫水反應生成四氫吡啶,四氫吡啶經還原反應最終生成六氫吡啶,進入哌啶類生物堿合成途徑(圖6)[23,73-77]。

綜上所述,胡椒堿的生物合成途徑可歸納如下:一方面,以PEP和E4P為最初反應底物,通過莽草酸途徑合成胡椒酰胺輔酶A;另一方面,以賴氨酸為底物,經脫羧、環化等一系列反應生成六氫吡啶。最后,胡椒酰胺輔酶A和六氫吡啶在胡椒堿合成酶的催化下生成胡椒堿。根據文中所述,將胡椒堿生物合成途徑中已經鑒定出的主要調控基因進行了匯總(表1)。

3 胡椒堿生物合成調控討論及展望

胡椒屬于典型的熱帶作物,其種植地區大多為地處熱帶、亞熱帶地區的不發達國家,分子育種等相關研究較為滯后。胡椒的消費國主要以發達國家為主,作為一味古老而著名的香料,發達國家在胡椒功能物質分離、保健醫療功效等方面開展了大量研究。胡椒堿作為胡椒最主要的功能物質,在促消化、抗炎癥、抗抑郁、提高藥效、降血脂、抑制腫瘤等方面具有廣泛的作用,一直是研究的熱點。因此,明晰胡椒中胡椒堿生物合成機理、克隆關鍵基因,通過生物工程技術提高胡椒堿含量,既是胡椒生產國品質育種的迫切需求,也是提高胡椒價值的有效途徑。

本研究以胡椒堿生物合成的兩個直接前體為切入點,參考模式植物莽草酸、賴氨酸代謝的研究進展,對胡椒堿生物合成研究進行了系統解析。在模式植物中,莽草酸代謝途徑的研究已很清楚,從最初的呼吸作用產物PEP與E4P的富集到莽草酸、分支酸、香豆酸的合成,其催化反應的關鍵中間產物以及相關基因都已經被鑒定出來[18,20,43]。因此,通過對代謝途徑中關鍵基因表達的調控,可以促進分支酸、香豆酸等中間產物的合成,以保證胡椒酰胺輔酶A合成有充分的前體物質。然而,從松柏醇到胡椒酰胺輔酶A合成需經過哪些酶促反應,仍然不清楚。筆者根據反應前體基團的變化,預測了反應類型,如claisen延伸反應,芳香族物質環化反應等,但這些反應在胡椒中是否真實存在、參與反應的基因等研究仍屬空白。由于莽草酸途徑的苯丙素類物質是次生代謝中間產物,不會在細胞內大量積累,不同物種下游的芳香物質不同,后續的合成調控也各不相同,代謝途徑支路錯綜復雜,因此,如何定向調節胡椒酰胺輔酶A的生物合成還需進一步研究。鑒定松柏醇到胡椒酰胺輔酶A合成途徑的中間產物、克隆參與該合成途徑的關鍵基因是當前亟需解決的重要課題。

胡椒堿生物合成另一前體來源于賴氨酸代謝產生的六氫吡啶。根據賴氨酸代謝途徑的特征,可通過3種方法提高六氫吡啶的合成效率,為胡椒堿合成提供充足前體。第一,從賴氨酸代謝的源頭調控,抑制賴氨酸氧化酶,提高賴氨酸脫羧酶的活性,使賴氨酸經脫羧反應生成戊撐二胺,為下游胡椒堿的合成提供前體[23]。第二,控制賴氨酸脫羧產物戊撐二胺的下游反應。豆科植物中戊撐二胺會選擇和丙酮酸發生反應,進入喹嗪烷類生物堿的合成途徑[22]。而胡椒科植物中戊撐二胺則經過氧化反應進入哌啶環合成途徑,為胡椒堿的合成提供底物,因此戊撐二胺下游的反應也是調節胡椒堿合成的重要途徑[78]。第三,提高胡椒堿合成酶基因的表達水平及其酶活性,使得更多的哌啶環參與胡椒堿的合成。嘧啶環是植物體內多種生物堿的合成前體,胡椒堿并不是它唯一的路徑,因此,克隆胡椒堿合成酶基因,通過基因工程技術超量表達該關鍵酶基因是提高胡椒堿合成水平的有效手段[79]。

目前,胡椒堿生物合成及其調控機制,主要基于模式植物以及離體實驗的研究成果,胡椒中胡椒堿生物合成相關的基因及中間產物尚未得到鑒定。因此,克隆胡椒自身胡椒堿生物合成的關鍵基因及鑒定其特異的中間產物是后續研究的重點。

參考文獻

[1] Zarai Z, Boujelbene E, Ben Salem N, et al. Antioxidant and antimicrobial activities of various solvent extracts, piperine and piperic acid from Piper nigrum[J]. LWT-Food Science and Technology, 2013, 50(2): 634-641.

[2] Bae G S, Kim M S, Jeong J, et al. Piperine ameliorates the severity of cerulein-induced acute pancreatitis by inhibiting the activation of mitogen activated protein kinases[J]. Biochemical and Biophysical Research Communications, 2011, 410(3): 382-388.

[3] Mehmood M H, Gilani A H. Pharmacological basis for the medicinal use of black pepper and piperine in gastrointestinal disorders[J]. Journal of Medicinal Food, 2010, 13(5): 1 086-1 096.

[4] Dyer, Lee A, Aparna DN Palmer, eds. Piper: a model genus for studies of phytochemistry, ecology, and evolution[M]. New York: Kluwer academic/Plenum publishers, 2004.

[5] 鄔華松, 楊建峰, 林麗云. 中國胡椒研究綜述[J]. 中國農業科學, 2009, 42(7): 2 469-2 480.

[6] Krishnamoorthy B, Parthasarathy V A. Improvement of black pepper[J]. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2010, 5(3): 1-12.

[7] Thiel A, Buskens C, Woehrle T, et al. Black pepper constituent piperine: Genotoxicity studies in vitro and in vivo[J]. Food and Chemical Toxicology, 2014, 66: 350-357.

[8] Srinivasan K. Black pepper and its pungent principle-piperine: a review of diverse physiological effects[J]. Critical Reviews in Food Science and Nutrition, 2007, 47(8): 735-748.

[9] Najar I, Sachin B, Sharma S, et al. Modulation of P-glycoprotein ATPase activity by some phytoconstituents[J]. Phytotherapy Research, 2010, 24(3): 454-458.

[10] Li S, Lei Y, Jia Y, et al. Piperine, a piperidine alkaloid from Piper nigrum re-sensitizes P-gp, MRP1 and BCRP dependent multidrug resistant cancer cells[J]. Phytomedicine, 2011, 19(1): 83-87.

[11] Diwan V, Poudyal H, Brown L. Piperine attenuates cardiovascular, liver and metabolic changes in high carbohydrate, high fat-fed rats[J]. Cell Biochemistry and Biophysics, 2013, 67(2): 297-304.

[12] Martha Perez Gutierrez R, Maria Neira Gonzalez A, Hoyo-Vadillo C. Alkaloids from piper: a review of its phytochemistry and pharmacology[J]. Mini Reviews in Medicinal Chemistry, 2013, 13(2): 163-193.

[13] Gross G G. From lignins to tannins: forty years of enzyme studies on the biosynthesis of phenolic compounds[J]. Phytochemistry, 2008, 69(18): 3 018-3 031.

[14] Haminiuk C W I, Maciel G M, Plata-Oviedo M S V, et al. Phenolic compounds in fruits - an overview[J]. International Journal of Food Science & Technology, 2012, 47(10): 2 023-2 044.

[15] Boudet A-M. Evolution and current status of research in phenolic compounds[J]. Phytochemistry, 2007, 68(22-24): 2 722-2 735.

[16] Proestos C, Sereli D, Komaitis M. Determination of phenolic compounds in aromatic plants by RP-HPLC and GC-MS[J]. Food Chemistry, 2006, 95(1): 44-52.

[17] Hahlbrock K, Scheel D. Physiology and molecular biology of phenylpropanoid metabolism[J]. Annual Review of Plant Biology, 1989, 40(1): 347-3469.

[18] Mir R, Jallu S, Singh T P. The shikimate pathway: review of amino acid sequence, function and three-dimensional structures of the enzymes[J]. Critical Reviews in Microbiology, 2015, 41(2): 172-189.

[19] Juminaga D, Keasling J D. Metabolic engineering of the shikimate pathway. WO. 2013, WO 2013033652 A1[P], 2013-03-07.

[20] Herrmann K M, Weaver L M. The shikimate pathway[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50(1): 473-503.

[21] Szoke E, Lemberkovics E, Kursinszki L. Alkaloids derived from lysine: piperidine alkaloids[M]. Natural Products: Springer, 2013: 303-341.

[22] Boschin G, Resta D. Alkaloids derived from lysine: quinolizidine(a focus on lupin alkaloids)[M]. Natural Products: Springer, 2013: 381-403.

[23] Bunsupa S, Katayama K, Ikeura E, et al. Lysine decarboxylase catalyzes the first step of quinolizidine alkaloid biosynthesis and coevolved with alkaloid production in leguminosae[J]. The Plant Cell, 2012, 24(3): 1 202-1 216.

[24] Vasavirama K, Upender M. Piperine: a valuable alkaloid from piper species[J]. International Journal of Pharmacy & Pharmaceutical Sciences, 2014, 6(4): 34-38.

[25] Govindarajan V, Stahl W H. Pepper-chemistry, technology, and quality evaluation[J]. Critical Reviews in Food Science & Nutrition, 1977, 9(2): 115-225.

[26] 莫崢嶸. 胡椒堿的抗氧化活性及穩定性研究[J]. 海南師范學院學報: 自然科學版, 2006, 19(1): 52-54.

[27] Meghwal M, Goswami T K. Piper nigrum and piperine: an update[J]. Phytotherapy Research, 2013, 27(8): 1 121-1 130.

[28] 劉 屏. 胡椒堿藥理作用的研究進展[J]. 中國藥物應用與監測, 2007, 4(3): 7-9.

[29] Geisler J G, Gross G G. The biosynthesis of piperine in Piper nigrum[J]. Phytochemistry, 1990, 29(2): 489-492.

[30] Semler U, Schmidtberg G, Gross G G. Synthesis of piperoyl coenzyme a thioester[J]. Z Naturforsch, 1987, 42: 1 070-1 074.

[31] Shingate P, Dongre P, Kannur D. New method development for extraction and isolation of piperine from black pepper[J]. International Journal of Pharmaceutical Sciences & Research, 2013, 4(8): 3 165-3 170.

[32] Muhamad Isa M. Synthesis of piperine derivatives[D]. Johor: Diss Universiti Teknologi Malaysia, 2012.

[33] Dev A, Tapas S, Pratap S, et al. Structure and function of enzymes of shikimate pathway[J]. Current Bioinformatics, 2012, 7(4): 374-391.

[34] Wagner T, Shumilin I A, Bauerle R, et al. Structure of 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase from Escherichia coli: comparison of the Mn2+*2-phosphoglycolate and the Pb2+*2-Phosphoenolpyruvate complexes and implications for catalysis1[J]. Journal of Molecular Biology, 2000, 301(2): 389-399.

[35] Ma N, Wei L, Fan Y, et al. Heterologous expression and characterization of soluble recombinant 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase from Actinosynnema pretiosum ssp. auranticum ATCC31565 through co-expression with Chaperones in Escherichia coli[J]. Protein Expression and Purification, 2012, 82(2): 263-269.

[36] Schoner R, Herrmann K M. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase. Purification, properties, and kinetics of the tyrosine-sensitive isoenzyme from Escherichia coli[J]. Journal of Biological Chemistry, 1976, 251(18): 5 440-5 447.

[37] Floss H G, Onderka D K, Carroll M. Stereochemistry of the 3-Deoxy-d-arabino-heptulosonate 7-Phosphate synthetase reaction and the chorismate synthetase reaction[J]. Journal of Biological Chemistry, 1972, 247(3): 736-744.

[38] Park A, Lamb H K, Nichols C, et al. Biophysical and kinetic analysis of wild-type and site-directed mutants of the isolated and native dehydroquinate synthase domain of the AROM protein[J]. Protein Science, 2004, 13(8): 2 108-2 119.

[39] Singh S A, Christendat D. Structure of arabidopsis dehydroquinate dehydratase-shikimate dehydrogenase and implications for metabolic channeling in the shikimate pathway[J]. Biochemistry, 2006, 45(25): 7 787-7 796.

[40] Roszak A W, Robinson D A, Krell T, et al. The structure and mechanism of the type II dehydroquinase from streptomyces coelicolor[J]. Structure, 2002, 10(4): 493-503.

[41] Benach J, Lee I, Edstrom W, et al. The 2.3-A crystal structure of the shikimate 5-Dehydrogenase orthologue YdiB from Escherichia coli suggests a novel catalytic environment for an NAD-dependent dehydrogenase[J]. Journal of Biological Chemistry, 2003, 278(21): 19 176-19 182.

[42] Michel G, Roszak A W, Sauve V, et al. Structures of shikimate dehydrogenase AroE and its paralog YdiB. A common structural framework for different activities[J]. J Biol Chem, 2003, 278(21): 19 463-19 472.

[43] Arcuri H A, Zafalon G F, Marucci E A, et al. SKPDB: a structural database of shikimate pathway enzymes[J]. BMC Bioinformatics, 2010, 11(1): 1-7.

[44] Saidemberg D M, Passarelli A W, Rodrigues A V, et al. Shikimate kinase(EC 2.7.1.71)from Mycobacterium tuberculosis: kinetics and structural dynamics of a potential molecular target for drug development[J]. Current Medicinal Chemistry, 2011, 18(9): 1 299-1 310.

[45] Anderson K S, Johnson K A. Kinetic and structural analysis of enzyme intermediates: lessons from EPSP synthase[J]. Chemical Reviews, 1990, 90(7): 1 131-1 149.

[46] Dias M V B, Borges J C, Ely F, et al. Structure of chorismate synthase from Mycobacterium tuberculosis[J]. Journal of Structural Biology, 2006, 154(2): 130-143.

[47] Koch G L E, Shaw D C, Gibson F. The purification and characterisation of chorismate mutase-prephenate dehydrogenase from Escherichia coli K12[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure, 1971, 229(3): 795-804.

[48] Jiang C, Yin B, Tang M, et al. Identification of a metagenome-derived prephenate dehydrogenase gene from an alkaline-polluted soil microorganism[J]. Antonie van Leeuwenhoek, 2013, 103(6): 1 209-1 219.

[49] Friedrich B, Schlegel H G. Aromatic amino acid biosynthesis in Alcaligenes eutrophus H16[J]. Arch Microbiol, 1975, 103(1): 141-149.

[50] Davidson B E. Chorismate Mutase-Prephenate Dehydratase from Escherichia coli[J]. Journal of Biological Chemistry, 1998, 273(1): 6 248-6 253.

[51] Maeda H, Yoo H, Dudareva N. Prephenate aminotransferase directs plant phenylalanine biosynthesis via arogenate[J]. Nature Chemical Biology, 2011, 7(1): 19-21.

[52] Matthieu G, Cécile G, Alexandra K, et al. Three different classes of aminotransferases evolved prephenate aminotransferase functionality in arogenate-competent microorganisms[J]. Journal of Biological Chemistry, 2014, 289(6): 3 198-3 208.

[53] Shapiro C L, Jensen R A, Wilson K A, et al. Assay for activity of arogenate dehydratase based upon the selective oxidation of arogenate[J]. Anal Biochem, 1981, 110(1): 27-30.

[54] Camm E L, Towers G H N. Phenylalanine ammonia lyase[J]. Phytochemistry, 1973, 12(5): 961-973.

[55] Achnine L, Blancaflor E B, Rasmussen S, et al. Colocalization of l-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis[J]. The Plant Cell, 2004, 16(11): 3 098-3 109.

[56] Scott D A, Hammond P M, Brearley G M, et al. Identification by high-performance liquid chromatography of tyrosine ammonia-lyase activity in purified fractions of Phaseolus vulgaris phenylalanine ammonia-lyase[J]. Journal of Chromatography B: Biomedical Sciences and Applications, 1992, 573(2): 309-312.

[57] Kato M J, Furlan M. Chemistry and evolution of the piperaceae[J]. Pure & Applied Chemistry, 2007, 79(4): 529-538.

[58] Liu X, Deng Z, Gao S, et al. A new gene coding for p-coumarate 3-hydroxylase from Ginkgo biloba[J]. Russ J Plant Physiol, 2008, 55(1): 82-92.

[59] Do C-T, Pollet B, Thévenin J, et al. Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis[J]. Planta, 2007, 226(5): 1 117-1 129.

[60] Inoue K, Sewalt V J H, Murray Ballance G, et al. Developmental expression and substrate specificities of alfalfa caffeic acid 3-O-Methyltransferase and caffeoyl coenzyme a 3-O-Methyltransferase in relation to lignification[J]. Plant Physiology, 1998, 117(3): 761-770.

[61] Okwute S K, Egharevba H O. Piperine-type amides: review of the chemical and biological characteristics[J]. International Journal of Chemistry, 2013, 5(3): 99-122.

[62] Becker-André M, Schulze-Lefert P, Hahlbrock K. Structural comparison, modes of expression, and putative cis-acting elements of the two 4-coumarate: CoA ligase genes in potato[J]. Journal of Biological Chemistry, 1991, 266(13): 8 551-8 559.

[63] Katja S, Klaus H V, Kilian W, et al. The substrate specificity-determining amino acid code of 4-coumarate: CoA Ligase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14): 8 601-8 606.

[64] Ranjeva R, Boudet A M, Faggion R. Phenolic metabolism in petunia tissues. IV. Properties of p-coumarate CoA ligase isozymes[J]. Biochimie, 1976, 58(10): 1 255-1 262.

[65] Mann J. Medicinal natural products: a biosynthetic approach[J]. Phytochemistry, 1998, 48(2): 410-410.

[66] Michael J P. Indolizidine and quinolizidine alkaloids[J]. Natural Product Reports, 2001, 18(5): 520-542.

[67] Heydari M, Ohshima T, Nunoura-Kominato N, et al. Highly Stable l-Lysine 6-Dehydrogenase from the Thermophile Geobacillus stearothermophilus Isolated from a Japanese Hot Spring: Characterization, Gene Cloning and Sequencing, and Expression[J]. Applied and Environmental Microbiology, 2004, 70(2): 937-942.

[68] Gómez D, Lucas-Elío P, Sanchez-Amat A, et al. A novel type of lysine oxidase: l-lysine-ε-oxidase[J]. Biochimica et Biophysica Acta(BBA)-Proteins and Proteomics, 2006, 1764(10): 1 577-1 585.

[69] Bunsupa S, Yamazaki M, Saito K. Quinolizidine alkaloid biosynthesis: recent advances and future prospects[J]. Frontiers in Plant Science, 2012, 3(4): 279-286.

[70] Schoofs G, Teichmann S, Hartmann T, et al. Lysine decarboxylase in plants and its integration in quinolizidine alkaloid biosynthesis[J]. Phytochemistry, 1983, 22(1): 65-69.

[71] Michael J P. Indolizidine and quinolizidine alkaloids[J]. Natural Product Reports, 2008, 25(1): 139-165.

[72] Taketo O, Masami Yokota H, Hideyuki S, et al. Molecular characterization of a novel quinolizidine alkaloid O-tigloyltransferase: cDNA cloning, catalytic activity of recombinant protein and expression analysis in lupinus plants[J]. Plant & Cell Physiology, 2005, 46(1): 233-244.

[73] Tipping A J, McPherson M J. Cloning and molecular analysis of the pea seedling copper amine oxidase[J]. Journal of Biological Chemistry, 1995, 270(28): 16 939-16 946.

[74] Bagni N, Creus J, Pistocchi R. Distribution of cadaverine and lysine decarboxylase activity in nicotiana glauca plants[J]. Journal of Plant Physiology, 1986, 125(1): 9-15.

[75] Csiszar K. Lysyl oxidases: a novel multifunctional amine oxidase family[J]. Progress in Nucleic Acid Research & Molecular Biology, 2001, 70: 1-32.

[76] Angelini R, Cona A, Federico R, et al. Plant amine oxidases “on the move”: An update[J]. Plant Physiology and Biochemistry, 2010, 48(7): 560-564.

[77] Dragull K, Yoshida W Y, Tang C S. Piperidine alkaloids from Piper methysticum[J]. Phytochemistry, 2003, 63(2): 193-198.

[78] OSullivan J, Unzeta M, Healy J, et al. Semicarbazide-sensitive amine oxidases: enzymes with quite a lot to do[J]. Neurotoxicology, 2004, 25(1): 303-315.

[79] Felpin F X, Girard S, Vo-Thanh G, et al. Efficient enantiomeric synthesis of pyrrolidine and piperidine alkaloids from tobacco[J]. The Journal of Organic Chemistry, 2001, 66(19): 6 305-6 312.

主站蜘蛛池模板: 日本少妇又色又爽又高潮| www精品久久| 亚洲男人的天堂久久精品| 免费激情网址| 国产成人亚洲欧美激情| 中文天堂在线视频| 国产一级α片| 亚洲丝袜第一页| 欧美日韩精品在线播放| 国产欧美日韩专区发布| 精品国产美女福到在线直播| 日韩精品久久无码中文字幕色欲| 五月天综合网亚洲综合天堂网| 高清欧美性猛交XXXX黑人猛交| 日韩免费毛片视频| 人妻精品久久久无码区色视| 欧美不卡视频一区发布| 露脸国产精品自产在线播| 国产一区亚洲一区| 国产女人18水真多毛片18精品| 欧美成人一级| 久久国产精品夜色| 欧美日韩综合网| 99久久精彩视频| 一本一道波多野结衣一区二区| 2048国产精品原创综合在线| 色婷婷成人网| 香蕉精品在线| 欧美日韩亚洲综合在线观看| 日本人真淫视频一区二区三区| 永久免费精品视频| 日韩区欧美区| 欧美一区二区人人喊爽| 3344在线观看无码| 国产黄色视频综合| 国产亚卅精品无码| 国产va免费精品观看| 白浆免费视频国产精品视频| 91在线中文| 久久黄色一级片| 精品午夜国产福利观看| 成年人久久黄色网站| 国产人成乱码视频免费观看| 日本人妻丰满熟妇区| 在线观看精品国产入口| 97se亚洲综合在线天天| 亚洲综合中文字幕国产精品欧美| a级毛片一区二区免费视频| 免费亚洲成人| 免费在线不卡视频| 欧美日韩福利| 亚洲资源站av无码网址| 无码一区中文字幕| 久久99精品久久久久纯品| 毛片免费视频| 91丨九色丨首页在线播放| 伦精品一区二区三区视频| 国产精品视频导航| 久久情精品国产品免费| 亚洲欧美日韩久久精品| 亚洲无码高清视频在线观看| 国产极品粉嫩小泬免费看| 全免费a级毛片免费看不卡| 久久无码免费束人妻| 亚洲天堂.com| 亚洲人成电影在线播放| 国产自在线播放| 福利在线一区| 在线高清亚洲精品二区| 国产a v无码专区亚洲av| 国产高清免费午夜在线视频| 免费国产一级 片内射老| 国产精品专区第1页| 亚洲天堂免费在线视频| 日韩精品资源| 欧美综合成人| 国产亚洲欧美日本一二三本道| 日韩精品一区二区三区大桥未久| 亚洲无线一二三四区男男| 国产精品网址在线观看你懂的| 毛片在线播放网址| 男女男免费视频网站国产|