999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Periodic Solutions for Some Second Order Systems with Gyroscopic Forces

2016-06-05 15:00:58MENGFengjuan
關鍵詞:系統

MENG Fengjuan

Periodic Solutions for Some Second Order Systems with Gyroscopic Forces

MENG Fengjuan

(School of Mathematics and Physics,Jiangsu University of Technology,Changzhou 213001,Jiangsu)

In this paper,the periodic solutions for second order non-autonomous differential systems with gyroscopic forces are investigated,by applying the least action principle and minimax methods,some existence results of periodic solutions are obtained.

periodic solution;critical point;variational method

1 Introduction

In this paper,we are concerned with the existence of periodic solutions for the following second order system:

where T>0,A is a real antisymmetry constant matrix and F:[0,T]×RN→R satisfies the following assumption:

(H)F(t,x)is measurable in t for each x∈RNand continuously differentiable in x for a.e.t∈[0,T],and there exist a∈C(R+,R+),b∈L1([0,T]; R+)such that

for all x∈RNand a.e.t∈[0,T].

The term A u(t)means that the system has a gyroscopic force(see[1]).For more background,see[2-4]and the references therein.System(1)was mentioned by Ekeland[5]as possible extensions of his basic examples by modern variational methods,but without concrete work.

For the case of A=0,system(1)reduces to the following second order Hamiltonian system

The existence of periodic solutions for(2)was first considered by Berger and Schechter in[6]under the coercive condition.From then on,problem(2)has been extensively studied,many solvability conditions are obtained,such as:the coercivity condition;the convexity conditions;the sublinear nonlinearity conditions;the subquadratic potential conditions;the superquadratic potential conditions;the periodicity conditions and the even type potential condition(See[7-8]and the references therein).

For the case of system(1),in[9-10],the authors have studied the existence of periodic solutions under superquadratic potential conditions and the subconvex condition respectively;in[11-14],Han etc.have investigated the existence of periodic solutions under the sublinear nonlinearity.

where 0≤α<1 and f,g∈L1([0,T];R+).

In this paper,we will consider the case of α=1.Furthermore,we will weak the Ahmad-Lazer-Paul condition

where β is a constant,which has been extensivelyused in the literature.Our main results complete and develop some known results.

2 Preliminaries

We first introduce some notations,inequalities and variational structure of(1),which will be used in our main results.={u:[0,T]→RN|u is absolutely continuous,

with the norm

for all u∈H1T.

one has Sobolev’s inequality

and Wirtinger’s inequality

for all u∈H1T(see Proposition 1.3 in[7]),where

Lemma 2.1[11-12]Define the corresponding functional φ onby

It follows from the assumption(H)that φ is continuously differentiable and the solutions of problem(1) corresponding to the critical points of φ.Moreover,one has

3 Main results

For convenience,we denote various positive constants as Ci,i=1,2,….Now we give our main results.

Theorem 3.1 Suppose that F(t,u)satisfies condition(H).Moreover,we have the following assumptions: (i)‖A‖where‖A‖ i s the norm of A as a linear operator from RNto RN;

(ii)there exist f,g∈L1([0,T];R+)withsuch that

f

or all x∈RNand a.e.t∈[0,T];

(iii)

Then problem(1)has at least one solution which minimizes φ on

then a>0.It follows from(ii)and Sobolev’s inequality and Young inequality that

as‖u‖→∞ by(iii)and

By Theorem 1.1 and Corollary 1.1 in[7],the proof is completed.

Remark 3.2 In[12],Han proved the corresponding results when F(t,x)is sublinear growth,i.e.(3)holds.Theorem 3.1 is a complementary and development of this result corresponding to α=1.

Corollary 3.3 Suppose that A=0 and F(t,u) satisfies condition(H)and(ii),(iii)in Theorem 3.1,then problem(2)has at least one solution which minimizes φ on

Remark 3.4 Corollary 3.3 improves Corollary 3 in[15].Instead of(iii),Corollary 3 in[15]requires Ahmad-Lazer-Paul condition

It is easy to see that(iii)in Theorem 3.1 is weaker that(7).

Theorem 3.5 Suppose that F(t,u)satisfies condition(H),and(i)in Theorem 3.1 holds.Moreover,assume F satisfies

(iv)there exist h,k∈L1([0,T];R+)with‖A‖)such that for every ε>0 there exists C(ε)

for all x∈RNand a.e.t∈[0,T];

(v)

where M will be specialized in the proof.Then problem(1)has at least one solution in H1T.

Proof We will accomplish the proof by three steps.

Step 1 First,we prove that φ satisfies the(PS) condition.Assume that{un}is a(PS)sequence for φ,that is{φ(un)}is bounded and φ'(un)→0 as n→∞.In a similar way to(6),we have

for large n.It follows from Wirtinger’s inequality that

for all n,thus we can get

Similar to(6),we can estimate

Combining with(8)and Young inequality,we can estimate

It follows from the boundedness of φ(un)and(8) and(9),we have

for all large n.From(v),by choosing ε small enough such that M >C11ε,combining with(10),we can deduce that{珔un}is bounded.Hence{un}is bounded in H1Tby(8).In a way similar to the proof of Proposition 4.1 in[7],see also the proof of Theorem 2.1 in[12],we conclude that the(PS)condition is satisfied.

In fact,similar to(6),we have

Step 3 By(v),we can easily find thatx)dt→+∞ as|x|→∞ for all x∈RN.Hence we can obtain that

Combining with step 1 to 3,by applying the Saddle Point Theorem 4.6 in[16],the proof is completed.

Remark 3.6 In[12],Han proved the corresponding results when F(t,x)is sublinear growth,i.e.(3)holds.Theorem 3.5 is a complementary and development of this result corresponding to α=1.

Corollary 3.7 Suppose that F(t,u)satisfies condition(A)and(iv),(v)in Theorem 3.5,then problem(2)has at least one solution which minimizes φ on

Remark 3.8 Under conditions(3)and(4),in[17],Tang proved the problem(2)has at least one solution in Theorem 1 and Theorem 2.Our Corollary 3.3 and Corollary 3.7 is a complementary and development of Theorem 1 and Theorem 2 in[17]respectively.

[1]ARNOLD V I.Mathematical Methods of Classical Mechanics[M].New York:Springer-Verlag,1978.

[2]MEIROVITCH L.A separation principle for gyroscopic conservative systems[C]//36th Structures,Structural Dynamics and Materials Conference.New Orleans:American Institute of Aeronautics and Astronautics,1997,119:110-119.

[3]SUI Y F,ZHONG W Y.An adjoint symplectic subspace iteration method of gyroscopic dynamic system and the application in rotor dynamic system[C]//ECCOMAS.Jyv skyl ,2004:24-28.

[4]TISSEUR F,MEERBERGEN K.The quadratic eigenvalue problem[J].SIAM Rev,2001,43(2):235-286.

[5]EKELAND I.Convex Methods in Hamiltonian Mechanics[M].Berlin:Springer-Verlag,1990.

[6]BERGER M S,SCHECHTER M.On the solvability of semilinear gradient operator equations[J].Adv Math,1977,25:97-132.

[7]MAWHIN J,WILLEM M.Critical Points Theory and Hamiltonian Systems[M].New York:Springer-Verlag,1989.

[8]TANG C L,WU X P.Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems[J].J Diff Eqns,2010,248(4):660-692.

[9]MENG F J,ZHANG F B.Periodic solutions for some second order systems[J].Nonlinear Anal,2008,68:3388-3396.

[10]MENG F J,ZHANG F B.Existence of periodic solutions for n-dimensional systems of Duffing type[J].Int J Nonlinear Sci,2009,8:162-167.

[11]HAN Z Q.Periodic Solutions for n-dimmensional Duffing Systems(I)[C]//GUO D J.Nonlinear Analysis and its Applications.Beijing:Beijing Sci and Tech Publishing House,1994.

[12]HAN Z Q.Periodic solutions to second order nonautonomous differential systems with unbounded nonlinearities[J].Math Nachr,2011,284(13):1669-1677.

[13]HAN Z Q,WANG S Q,YANG M H.Periodic solutions to second order nonautonomous differential systems with gyroscopic forces[J].Appl Math Lett,2011,24:1343-1346.

[14]HAN Z Q,WANG S Q.Multiple solutions for nonlinear systems with gyroscopic forces[J].Nonlinear Analysis,2012,75: 5756-5764.

[15]ZHAO F K,WU X.Periodic solutions for a class of non-autonomous second order systems[J].J Math Anal Appl,2004,296: 422-434.

[16]RABINOWITW P H.Minimax Methods in Critical Point Theory with Application to Differential Equations[C]//CBMS,65.Providence:Am Math Soc,1986.

[17]TANG C L.Periodic solutions for nonautonomous second order systems with sublinear nonlinearity[J].Proc Am Math Soc,1998,126:3263-3270.

[18]居加敏,王智勇.一類帶阻尼項的次二次二階Hamilton系統的周期解[J].四川師范大學學報(自然科學版),2015,38(3):329-332.

[19]葉一蔚.具有變號位勢的二階Hamilton系統周期解的存在性定理[J].四川師范大學學報(自然科學版),2013,36(3): 337-341.

[20]賀鐵山,陳文革,雷友發.二階離散Hamiltonian系統的多重變號周期解[J].四川師范大學學報(自然科學版),2010,33(4):462-466.

[21]TANG C L,WU X P.Notes on periodic solutions of subquadratic second order systems[J].J Math Anal Appl,2003,285(1): 8-16.

[22]TANG C L,WU X P.Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems[J].J Math Anal Appl,2002,275(2):870-882.

帶gyroscopic項的二階系統周期解的存在性

孟鳳娟

(江蘇理工學院數理學院,江蘇常州213001)

利用臨界點理論中的極小作用原理和極小極大方法,研究了帶有gyroscopic項的二階非自治微分系統周期解的存在性,得到了一些新的可解條件,推廣和改進了已有的結果.

周期解;臨界點;變分方法

O175

A

1001-8395(2016)05-0643-06

2015-07-27

國家自然科學基金(11526100)、江蘇省高校自然科學基金(15KJB110005)和江蘇省青藍工程作者簡介:孟鳳娟(1982—),女,副教授,主要從事非線性泛函分析的研究,E-mail:fjmeng@jsut.edu.cn

10.3969/j.issn.1001-8395.2016.05.005

(編輯 周 俊)

date:2015-07-27

s:This work was supported by NSFC Grant(11401459),Natural Science Fund For Colleges and Universities in Jiangsu Province (15KJB110005)and Qinglan Project of Jiangsu Province

2010 MSC:34C25;58E05;58K05

猜你喜歡
系統
Smartflower POP 一體式光伏系統
工業設計(2022年8期)2022-09-09 07:43:20
WJ-700無人機系統
ZC系列無人機遙感系統
北京測繪(2020年12期)2020-12-29 01:33:58
基于PowerPC+FPGA顯示系統
基于UG的發射箱自動化虛擬裝配系統開發
半沸制皂系統(下)
FAO系統特有功能分析及互聯互通探討
連通與提升系統的最后一塊拼圖 Audiolab 傲立 M-DAC mini
一德系統 德行天下
PLC在多段調速系統中的應用
主站蜘蛛池模板: 亚洲天堂免费| 中文精品久久久久国产网址| 波多野结衣亚洲一区| 精品国产黑色丝袜高跟鞋| 久久一级电影| 国产特一级毛片| 欧美第一页在线| 美臀人妻中出中文字幕在线| 亚洲无码视频喷水| 中国精品自拍| 亚洲一级毛片免费观看| 亚洲国产天堂久久九九九| 日韩欧美中文| 日韩A∨精品日韩精品无码| 一本色道久久88综合日韩精品| 亚洲开心婷婷中文字幕| 亚洲欧洲AV一区二区三区| 久久九九热视频| 波多野结衣的av一区二区三区| 91网站国产| 精品撒尿视频一区二区三区| 福利一区在线| 国产欧美日韩在线一区| 亚洲高清资源| 国产美女自慰在线观看| 日韩av资源在线| 色婷婷电影网| 91免费国产高清观看| 亚洲成在人线av品善网好看| 国产男人的天堂| 国产一级片网址| 找国产毛片看| 国产精品30p| 国产第一福利影院| 国产女人综合久久精品视| 国产日韩AV高潮在线| 久久精品亚洲专区| 精品国产成人a在线观看| 国产va在线| 国产成人亚洲精品色欲AV| 欧美人人干| 成年片色大黄全免费网站久久| 国产精品男人的天堂| 欧美在线伊人| 成人在线不卡| 六月婷婷精品视频在线观看| 色欲综合久久中文字幕网| 国产精品自在在线午夜| 久久综合色播五月男人的天堂| 国产尹人香蕉综合在线电影| 国产一区二区三区在线精品专区| 试看120秒男女啪啪免费| 欧美国产视频| 中文字幕一区二区人妻电影| 99视频在线免费| 一区二区在线视频免费观看| 99re这里只有国产中文精品国产精品| 欧美福利在线观看| 亚洲二三区| 亚洲欧洲日产无码AV| 国产亚洲精品自在线| 久久久国产精品无码专区| 日韩在线播放欧美字幕| 日韩小视频在线播放| 最新亚洲人成无码网站欣赏网 | 亚洲成人黄色在线观看| 囯产av无码片毛片一级| 国产精品不卡片视频免费观看| 欧美色视频网站| 精品综合久久久久久97超人该| 国产激情第一页| 天天躁日日躁狠狠躁中文字幕| 免费Aⅴ片在线观看蜜芽Tⅴ| 国产在线无码av完整版在线观看| 狠狠做深爱婷婷综合一区| 国产成人永久免费视频| 国产Av无码精品色午夜| 免费观看成人久久网免费观看| 99久久精品国产麻豆婷婷| 成年女人a毛片免费视频| 日韩视频免费| 国产日韩精品欧美一区喷|