


DOI:10.16644/j.cnki.cn33-1094/tp.2016.07.016
摘 要: 煙花算法是最近提出的一種群體智能算法,效率較高,但是仍然容易陷入局部最優解。為進一步提高算法的性能做了兩點改進:①采用混沌初始化的方式,有利于初始解遍布整個解空間;②當全局最優解陷入停滯時,自動啟動高斯擾動模塊對全局最優解擾動,有利于算法跳出局部最優解。在多個具有不同特性的測試函數上的實驗表明,改進算法的性能優于原始煙花算法。
關鍵詞: 煙花算法; 群體智能; 優化算法; 混沌
中圖分類號:TP301.6 文獻標志碼:A 文章編號:1006-8228(2016)07-56-03
Improved fireworks algorithm based on Chaos initialization and Gaussian perturbation
Du Zhenxin
(School of Computer Information Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China)
Abstract: FA (fireworks algorithm) is a newly proposed swarm intelligence algorithm; it has a high efficiency, but is still easy to fall into the local optimal solution. To further improve the algorithm's performance, this paper has done the improvement in two aspects: ① using chaos initialization to facilitate the initial solutions distribution throughout the solution space; ② when the global optimal solution falls into a standstill, the Gaussian perturbation module is automatically activated to perturb the global optimal solution, and help FA escaping the local optimal solution. The experiments on several test functions with different characteristics show that the performance of the improved algorithm is better than that of the original fireworks algorithm.
Key words: fireworks algorithm; swarm intelligence; optimization algorithm; chaos
0 引言
煙花算法是由Tan和Zhu[1]提出的一種群體智能優化算法,具有良好的優化性能,逐漸引起國內外關注[2-5],但是仍然容易早熟收斂。本文在原始煙花算法基礎上,采用混沌初始化操作和高斯擾動操作,提高了算法的性能。
3 實驗
為了測試改進算法的性能,本文算法與原始煙花算法FA進行了對比試驗。測試函數與文獻[1]中相同,FA與本文改進算法的參數設置與文獻[1]相同,本文新增加的參數為:最小進化速度閾值θ=0.01,最大全局極值擾動次數d=10。表1是對比測試結果,其中FA的數據來自文獻[1]。
從表1可以看出,本文的改進算法在所有測試函數上的結果全部好于或等于原始煙花算法,驗證了本文改進算法的有效性。
4 結束語
本文在兩個方面對原始煙花算法進行了改進:①采用混沌初始化煙花的初始解;②當全局最優解接近陷于停滯時,自動啟動高斯擾動模塊,對當前全局最優解進行多次高斯擾動,直到得到的擾動值好于當前的全局最優解或者多次擾動失敗退出擾動模塊。這樣有利于全局最優解跳出局部最優解,促進算法的進化。實驗結果表明本文的改進是有效的。
參考文獻(References):
[1] Tan Y,Zhu Y C.Fireworks Algorithms for Optimization[C]//
Proceedings of Int. Conf. on Swarm Intelligence (ICSI2010),Part II. Beijing, China:Springer-Verlag,2010:355-364
[2] 張家琴.求解0/1背包問題的煙花算法研究[J].武漢工程職
業技術學院學報,2011.23(3).
[3] 杜振鑫.煙花算法中爆炸半徑的改進研究[J].計算機時代,
2013.1:28-29
[4] 譚營.煙花算法引論[M].科學出版社,2015.
[5] 王培崇,高文超,錢旭,茍海燕,汪慎文.應用精英反向學習的
混合煙花爆炸優化算法[J].計算機應用,2014.34(10):2886-2890
[6] Zheng S,Andreas J and Tan Y.Enhanced Fireworks
Algorithm[C]//IEEE International Conference on Evolutionary Computation. Cancun, MEXICO: IEEE,2013:2069-2077
[7] Alatas B. Chaotic bee colony algorithms for global
numerical optimization[J].Expert Systems with Applications,2010.37(8):5682-5687