999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于電磁兼容分析的艦載雷達優化部署方法*

2016-07-21 05:18:11方小星朱志宇張冰李陽
現代防御技術 2016年2期

方小星,朱志宇,張冰,李陽

(江蘇科技大學 電子信息學院,江蘇 鎮江 212003)

?

基于電磁兼容分析的艦載雷達優化部署方法*

方小星,朱志宇,張冰,李陽

(江蘇科技大學 電子信息學院,江蘇 鎮江212003)

摘要:針對艦載雷達頻譜擁擠,頻率相近或相同雷達之間存在電磁兼容的問題,提出了一種基于電磁兼容分析的雷達優化部署方法。針對由定向天線和全向天線雷達組成的雷達系統,建立了電磁兼容模型,將其作為適應度函數,運用粒子群算法對雷達進行優化部署。仿真結果表明,應用粒子群算法結合電磁兼容模型,可以很好地解決雷達的優化部署問題。

關鍵詞:電磁兼容;雷達天線;度量模型;艦載雷達系統;粒子群;優化部署

0引言

在海戰場上雷達林立,尤其是雷達工作頻譜擁擠的情況下,相近和相同頻率雷達同時工作時會產生嚴重的電磁兼容問題[1-3],這時候需要對雷達進行優化部署?,F有的文獻一般只考慮雷達對責任區的覆蓋,將覆蓋系數和重疊系數為主要優化目標[4-7],這種方法主要從對主要方向、主要高度層中的目標區覆蓋冗余數最多、體積最大以及單部雷達對目標的覆蓋系數最大兩個方面進行優化部署。少數文獻考慮了雷達的探測概率,通過提高雷達探測概率來優化雷達組網[8-10],給出了單部雷達探測概率和組網雷達聯合探測概率模型,通過分析模型與雷達位置的關系來實現優化部署。然而上述文獻忽略了雷達間存在的電磁兼容問題,尤其在頻譜擁擠的情況下。本文提出了一種將雷達間的電磁兼容作為雷達優化目標,結合粒子群算法對雷達進行優化部署的方法。

1艦載雷達電磁兼容模型

假設有N部雷達同時工作,且存在同頻干擾。那么可知第n個雷達受到其他雷達的干擾Prn可表示為

Prn=Pn1+Pn2+…+Pn(n-1)+Pn(n+1)+

(1)

此時,雷達n收到的目標信號功率Prs為[11]

(2)

式中:Pn為雷達n發射功率;Gn為雷達n天線增益;σ為目標散射截面積;Ln為雷達發射并接收電磁波過程中的能量損耗;Rn為雷達n與目標的距離。

在受干擾條件下,雷達要能發現目標,收到的目標信號功率Prs和接收的干擾功率Prn必須滿足以下條件:

(3)

式中:Kn為第n個雷達的壓制系數。

當Prn/Sn min≤Kn時,雷達的最大作用距離不受影響。當Prn/Sn min>Kn時,可以得到干擾下的雷達最大作用距離[12]:

(4)

1.1全向天線雷達之間的電磁兼容模型

雷達有許多種類,但是通過雷達天線種類可以將其分為2種:采用定向天線的雷達和采用全向天線的雷達。由于全向天線波束簡單,首先建立全向天線雷達之間的電磁兼容模型。

(5)

由N部全向天線雷達組成的雷達系統的電磁兼容程度為

(6)

式中:ηn為第n個雷達的重要系數,根據作戰要求對雷達的要求度確定。

1.2全向天線與定向天線雷達之間電磁兼容模型

當存在定向天線時,被定向天線對準,接收機前端會出現過載現象,電磁兼容程度很差,可認為電磁兼容程度μ=0。假設,有M個定向天線雷達對全向天線雷達n有干擾。定向天線雷達i對全向天線雷達n的對準概率pni,那么雷達n不被對準的概率為

(7)

第n個雷達與定向雷達的電磁兼容程度為

(8)

(9)

第k個定向天線雷達與全向天線雷達的電磁兼容程度可表示為

(10)

1.3定向天線雷達之間的電磁兼容模型

對于2個定向天線雷達之間的電磁兼容問題顯然不能直接完全用上述模型來預測雷達間的電磁兼容程度。當2個定向天線雷達的主瓣波束不能相互對準的時候,模型與上述相同。當2個定向天線雷達的主瓣波束可以相互對準時,既需要避免對其他天線的對準也需要避免對準其他天線。

(11)

式中:Ph為水平方位對準概率;Pυ為俯仰方位對準概率。

(12)

(13)

1.4雷達系統的電磁兼容模型

將相近或相同頻率的雷達組成雷達系統,應用上述電磁兼容模型,可以預測整個雷達系統的電磁兼容程度。假設有N個全向天線雷達,K個定向天線雷達,其中有M個定向天線雷達有可以兩兩對準的雷達。雷達系統的電磁兼容程度為

(14)

式中:ηn是第n個全向天線雷達的重要系數;εk,εm為第k,m個定向天線雷達的重要系數。

2基于電磁兼容的艦載雷達位置優化部署方法

采用粒子群算法對雷達位置進行優化部署,而對艦載雷達優化部署就是對艦船編隊時的位置進行優化。用Xi表示n維搜索空間中粒子i的當前位置,Vi表示當前粒子的飛行速度,Pi表示當前粒子所經歷的最好位置[15-16]。

(15)

式中:n表示維度;i表示第i個粒子(當前粒子)。

(16)

式中:t表示第t次迭代。

設群體中粒子數為S,群體中所有粒子所經歷過的最好位置為Pg(t)(最優位置),可得:

(17)

基本粒子群算法粒子i的進化方程可描述為

vij(t+1)=wvij(t)+c1r1j(t)(Pij(t)-xij(t))+

c2r2j(t)(Pgj(t)-xij(t)),

(18)

xij(t+1)=xij(t)+vij(t+1),

(19)

式中:xij(t),vij(t)表示粒子i第j維第t代的位置與運動速度;w為慣性系數,值在0~1之間;c1,c2為加速度常數,值在0~2之間;r1j,r2j分別為2個相互獨立的隨機數,值在0~1之間;Pgj(t)表示第j維最優位置粒子。

將雷達的電磁兼容程度作為雷達位置優化部署的適應度函數,在已知雷達參數的情況下,當雷達工作在相近或相同頻率時,以滿足作戰要求為前提確定雷達的位置空間范圍,運用粒子群算法對雷達的部署進行優化。基于電磁兼容分析的雷達優化部署方法的步驟:

(2) 不考慮不同時間的雷達使用與否與重要度系數變化,只分析此時的位置對雷達對準的概率影響,確定此時的總電磁兼容程度。

(3) 對粒子進行選擇:①假設以概率1選擇所有Xi;②通過公式(14)計算每個粒子的Φ總,通過公式(16)求出當前所有粒子的最優位置;③運用公式(17)求得種群中到目前為止在搜索空間找到的最好粒子,即最優位置。

(4) 對粒子進行繁殖:①利用公式(19)求出更新后的速度;②利用公式(20)求出更新后的t+1代的粒子群,即位置。

(5) 判斷是否達到迭代次數:若是,直接輸出當前最優位置;若不是,則令t=t+1,轉入第⑵步。

(6) 結束,輸出最后的最優位置。

此方法默認各雷達的工作情況不變,忽略時間這一維度,只從空間角度來簡化問題。最后用算例來說明方法的有效性。

3算例分析

以3部雷達為例,表1給出3部雷達的參數。

3部雷達分別為表1中的雷達A、雷達B和雷達C,用圓圈表示它們的位置,如圖1所示。

雷達A在x2+y2=1 600,(0≤x≤40)的范圍內滿足作戰需求,雷達B在x軸上,雷達C在y軸上。雷達C掃描范圍為以雷達C為圓心順時針從y軸掃描60°,雷達B掃描范圍在x軸下方。顯而易見,雷達A在邊界上得到的Φ比在邊界以內大。用上述粒子群算法對其進行優化分布,得到的雷達位置優化結果如表2~4所示。

表1 雷達的主要技術參數

圖1 雷達分布圖Fig.1 Radar maps

表2 雷達C位于y軸20 km處時位置優化結果

表3 雷達C位于y軸18 km處時位置優化結果

表4 雷達C位于y軸10 km處時位置優化結果

從上述表2~4可以看出,雷達的重要度系數對于雷達的電磁兼容程度有很重要的影響,當雷達A的重要度系數從0.8降低到0.4時,表2中總電磁兼容程度由0.53提高到0.55~0.56,表3中總電磁兼容程度由0.53提高到0.56~0.57,表4中總電磁兼容程度由0.57~0.58提高到0.60~0.62;雷達B,C的位置對于雷達的電磁兼容程度有很重要影響,由表2~4可以發現在重要度系數相同時,隨著雷達B在x軸離原點距離的增大,總電磁兼容程度并不是線性增大的。例如在表2中第一次優化的結果中,位置1:Φ總=0.533 7;位置2:Φ總=0.530 5;位置3:Φ總=0.531 6。

從上述表2~4中的結果可以看出,雷達B,C的位置對最優的雷達A的位置也有很大影響,但是當雷達C位于y軸10 km時,雷達A的最優位置不發生改變,這時候最優位置超出了所要求的雷達位置范圍。雷達的重要度系數也會影響雷達A的最優位置,例如表2中在雷達B位置相同時,雷達A的最優位置也明顯不同。

上述仿真結果表明,應用粒子群算法結合電磁兼容模型,可以很好地解決頻率相近或相同雷達工作時的優化部署問題。

4結束語

本文應用粒子群算法,提出了一種基于電磁兼容分析的雷達優化部署方法。針對由工作頻率相近或相同的定向天線雷達和全向天線雷達組成雷達系統,建立了雷達的電磁兼容模型,將電磁兼容程度作為雷達位置優化部署的適應度函數,以滿足作戰要求為前提確定雷達的位置空間范圍,運用粒子群算法對雷達的部署進行優化。仿真結果表明,在雷達頻譜擁擠的情況下,該方法可以有效地解決雷達的優化部署問題,使得雷達在滿足作戰要求的范圍內,電磁兼容程度達到最大,對艦船編隊時決定艦船的位置有一定參考作用。

參考文獻:

[1]毛滔,曾浩.雷達抗同頻干擾方法研究[J].航天電子對抗,2005,21(6):43-45.

MAO Tao, ZENG Hao.Anti-Interference in the Same Frequency of Radar[J].Aerospace Electronic Warfare,2005,21(6):43-45.

[2]郎維川,張林昌,樓鼎夫,等.GB/T17624.1-1998 電磁兼容綜述電磁兼容基本術語和定義的應用與解釋[S].北京:中國標準出版社,1998.

LANG Wei-chuan,ZHANG Lin-chang,LOU Ding-fu,et al. Electromagnetic compatibility-General-Application and Interpretation of Fundamental Definitions and Terms[S].Beijing:Standards Press of China,1998.

[3]邱炎,肖靂.電磁兼容標準與認證[M].北京:北京郵電大學出版社,2002.

QIU Yan,XIAO li.Electromagnetic Compatibility Standards and Certification[M].Beijing:Beijing University of Posts and Telecommunications Press,2002.

[4]邢福成,康錫章.雷達組網區域性防御區優化部署[J].現代防御技術,2004,32(4):58-62.

XING Fu-cheng,KANG Xi-zhang.The Optimal Deployment of Radar Network in a Defensive Area[J].Modern Defense Technology,2004,32(4):58-62.

[5]蔡婧,許劍,李婧嬌.基于文化遺傳算法的雷達優化部署[J].現代防御技術,2010,38(6):6-11.

CAI Jing,XU Jian,LI Jing-jiao.Genetic Algorithm Based on Optimal Deployment of Radar Network[J].Modern Defense Technology,2010,38(6):6-11.

[6]劉彥君,黃金才,王江.有源干擾條件下基于NSGA-Ⅱ的雷達網優化部署方法[J].指揮控制與仿真,2014,36(1):36-40.

LIU Yan-jun,HUANG Jin-cai,WANG Jiang.Optimal Deployment of Radar Network Based on NSGA-Ⅱ Under Active Jamming[J].Command Control & Simulation,2014,36(1):36-40.

[7]崔玉娟,察豪,田斌.改進的混合蛙跳算法在雷達網部署中的應用[J].海軍工程大學學報,2015,36(1):36-40.

CUI Yu-juan,CHA Hao,TIAN Bin.Improved Shuffled Frog Leaping Algorithm for Radar Network Deployment[J].Journal of Naval University of Engineering,2015,36(1):36-40.

[8]譚賢四,武文,王紅,等. 區域警戒雷達網優化部署研究[J].現代雷達,2001,23(5):6-10.

TAN Xian-si,WU Wen,WANG Hong,et al.Study on Optimizing a Locally Netted Warning Radar System[J].Modern Radar,2001,23(5):6-10.

[9]孫國偉,謝軍偉,孫博.一種新的組網雷達優化布站方法[J].計算機仿真,2013,30(9):23-26.

SUN Guo-wei,XIE Jun-wei,SUN Bo.New Method of Network Radar Optimized Disposition[J].Computer Simulation,2013,30(9):23-26.

[10]師俊朋,胡國平.基于N-P準則的雷達網反隱身探測概率分析[J].現代防御技術,2015,43(2):24-28.

SHI Jun-peng,HU Guo-ping.Performance Research of Radar Network Anti-Stealth Detection Probability on N-P Criterion[J].Modern Defense Technology,2015,43(2):24-28.

[11]MAHAFZA B R,ELSHERBENI A.MATLAB Simulations for Radar Systems Design[M].Chapman&Hall/CRC Press,2003.

[12]李圭源,張厚,殷雄,等.基于作用距離衰減的雷達間電磁兼容模型[J].電訊技術,2010,50(3):49-53.

LI Gui-yuan,ZHANG Hou,YIN Xiong,et al.Radar Electromagnetic Compatibility Model Based on Radar Range Attenuation[J].Telecommunications Technology,2010,50(3):49-53.

[13]史豪杰,邢清華,劉付顯.基于最大作用距離損耗的雷達間電磁兼容度量新方法[J].現代防御技術,2010,38(6):138-140.

SHI Hao-jie,XING Qing-hua,LIU Fu-xian.A New Method to Measure EMC between Radars Based on Maximun Radar Range’s Loss[J].Modern Defense Technology,2010,38(6):138-140.

[14]侯民勝.雷達之間的干擾及概率計算[J].雷達與對抗,2006,26(2):16-18.

HOU Min-sheng.The Analysis of Interference Between Radars and the Computation of Interference Probability[J].Radar and ECM,2006,26(2):16-18.

[15]KENNEDY J,EBERHART R C.Particle Swarm Optimization [C]∥Proceedings of International Conference on Neural Networks.New York: IEEE,1995:1942-1948.

[16]EBERHART R C,SHI Y H.Particle Swarm Optimization:Development,Applications and Resources[C]∥Proceedings of the Congress on Evolutionary Computation. Piscataway:IEEE,2001:81-86.

Ship-borne Radar Optimal Deployment Method Based on EMC Analysis

FANG Xiao-xing,ZHU Zhi-yu,ZHANG Bing,LI Yang

(Jiangsu University of Science and Technology,Dept. of Electronics and Information,Jiangsu Zhenjiang 212003,China)

Abstract:Aimed at the existence of electro-magnetic compatibility (EMC) problems between similar or identical frequency radars when ship-borne radar spectrum is crowding, a radar optimal deployment method based on EMC analysis is presented. For the radar systems composed of directional antenna radars and omni-directional antenna radars, an EMC degree measurement model is established as the fitness function. The optimal deployment of the radars can be got with particle swarm optimization (PSO) algorithm. The simulation results show that application of PSO algorithm combined with EMC model can commendably solve the radar optimal deployment problems.

Key words:electro magnetic compatibility(EMC); radar antenna; measurement model;ship-borne radar system; particle swarm optimization(PSO);optimal deployment

*收稿日期:2015-04-20;修回日期:2016-06-06

基金項目:船舶預研支撐技術基金項目(13J3.3.5);江蘇省普通高校研究生科研創新計劃資助項目(KYL X15_1109)

作者簡介:方小星(1991-),男,江蘇江都人。碩士生,主要研究方向為電磁兼容分析。

通信地址:212003江蘇省鎮江市夢溪路2號江蘇科技大學電子信息學院E-mail:fang_xiaoxing@126.com

doi:10.3969/j.issn.1009-086x.2016.02.006

中圖分類號:TN956

文獻標志碼:A

文章編號:1009-086X(2016)-02-0037-06

空天防御體系與武器

主站蜘蛛池模板: 四虎精品国产AV二区| 四虎影视国产精品| 久久精品视频一| 亚洲国产无码有码| 全色黄大色大片免费久久老太| 久久久精品无码一二三区| 国产精品无码一区二区桃花视频| 日本少妇又色又爽又高潮| 无码中字出轨中文人妻中文中| 毛片网站观看| 国产福利小视频在线播放观看| 欧美中文字幕一区| 中文字幕日韩久久综合影院| 欧美一级特黄aaaaaa在线看片| 亚洲成人播放| 国产香蕉在线视频| 亚洲国产成熟视频在线多多| 久久国产精品麻豆系列| 国产毛片高清一级国语| 色综合天天综合中文网| 免费人成在线观看成人片| 午夜免费小视频| 福利姬国产精品一区在线| 欧美、日韩、国产综合一区| 一级做a爰片久久毛片毛片| 亚洲另类色| 丁香六月激情婷婷| 超碰精品无码一区二区| 亚洲综合精品香蕉久久网| 狠狠色丁香婷婷综合| 国产一区二区三区免费| 综合久久五月天| 精品国产黑色丝袜高跟鞋| 亚洲aⅴ天堂| 国产精品自在线拍国产电影| 国产在线精品人成导航| 91啦中文字幕| 成人精品视频一区二区在线| 国产尤物在线播放| 欧美午夜小视频| 亚洲码一区二区三区| 国产成人精品一区二区| 国内老司机精品视频在线播出| 成人免费视频一区| 国产亚洲欧美日韩在线一区二区三区| 亚洲成A人V欧美综合| 国产97公开成人免费视频| 欧美日本在线观看| 88av在线播放| 色AV色 综合网站| 亚洲国产日韩在线成人蜜芽| 国产在线视频福利资源站| 国产9191精品免费观看| 国产成人精品亚洲日本对白优播| 原味小视频在线www国产| 日韩小视频在线播放| 91po国产在线精品免费观看| 日韩高清无码免费| 4虎影视国产在线观看精品| 国产99免费视频| 中文字幕av无码不卡免费| 亚洲AⅤ无码国产精品| 好吊色妇女免费视频免费| 亚洲视频a| 欧美激情视频在线观看一区| 亚洲V日韩V无码一区二区| 欧美区一区| 国产拍在线| 黄色三级网站免费| 国产精品第5页| 99九九成人免费视频精品| 午夜无码一区二区三区| 久久无码av三级| 亚洲美女久久| 狠狠色成人综合首页| 国产福利在线观看精品| 97青草最新免费精品视频| 国产黄色爱视频| 国产精品无码久久久久久| 成人福利在线观看| 日本妇乱子伦视频| 亚洲精品制服丝袜二区|