田軍吉,楊勝芬,陸 鄒,石 宇
(1.貴州省六盤水市鐘山區經濟和信息化局,貴州 六盤水 553001;2.信和匯金信息咨詢(北京)有限公司,貴州 六盤水 553001)
?
綜述與展望
V-Ti基脫硝催化劑去除汞和PCDDs/PCDFs的研究現狀
田軍吉1*,楊勝芬2,陸鄒1,石宇1
(1.貴州省六盤水市鐘山區經濟和信息化局,貴州 六盤水 553001;2.信和匯金信息咨詢(北京)有限公司,貴州 六盤水 553001)
摘要:將柔軟纖維與折皺鋼網復合制成波紋式支撐骨架,將V-Ti基脫硝催化劑負載到波紋式支撐骨架上制成整體波紋式脫硝催化劑。介紹V-Ti基波紋式整體脫硝催化劑的主要制備工藝、優點以及國內外對V-Ti基波紋式整體脫硝催化劑的研究現狀;對V-Ti基脫硝催化劑與貴金屬脫硝催化劑的制造成本以及PCDDs/PCDFs催化分解效果進行對比,兩者具有相同的催化分解效果,V-Ti基脫硝催化劑成本低得多;活性組分、V質量分數以及活性溫度不同,V-Ti基脫硝催化劑催化分解PCDDs/PCDFs的效果也不同,催化分解率最高可達97.7%;研究者得出V-Ti基脫硝催化劑催化氧化Hg0的不同效果,介紹V-Ti基脫硝催化劑催化氧化Hg0的研究現狀。
關鍵詞:三廢處理與綜合利用;V-Ti基脫硝催化劑;波紋式脫硝催化劑;汞;PCDDs/PCDFs
CLC number:TQ426.6;X701Document code: AArticle ID: 1008-1143(2016)05-0025-06
目前,火電廠、高爐轉爐煉鐵和煉鋼、水泥行業燃煤煙氣脫硝處理最有效的手段是SCR噴氨脫硝系統[1-9 ]。SCR噴氨系統核心是脫硝催化劑,工業常用的脫硝催化劑為V-Ti基催化劑,其催化反應活性溫度窗口寬,為(300~420)℃。脫硝催化劑使用較多的是蜂窩式和波紋式,波紋式脫硝催化劑具有接觸面積和壓降大的特點,備受燃煤工廠青睞。研究發現,V-Ti基催化劑不僅可用于煙氣脫硝處理,還可將煙氣中PCDDs/PCDFs催化氧化分解為H2O、CO2和HCl[10-11],將Hg0催化氧化為Hg2+[12]。
本文綜述波紋式脫硝催化劑的制備工藝、主要特點以及脫硝催化劑催化分解PCDDs/PCDFs和催化氧化汞的主要特性。
1波紋式脫硝催化劑的特點及制備工藝
波紋式脫硝催化劑屬非均質催化劑,以柔軟纖維和折皺鋼網復合制成載體,將活性組分V2O5和V2O5-WO3等涂覆在載體上而制成。波紋式脫硝催化劑以玻璃纖維、陶瓷纖維或復合式載體作為支撐骨架,結構堅硬,承載能力強,還具有以下特點[13]:(1) 主要采用玻璃纖維作為基體材料,與傳統的蜂窩式和板式脫硝催化劑相比,在制造工藝和結構上,融合了兩種催化劑的優點;(2) 具有較大的比表面積,脫硝率高于90%,同體積條件下,催化效率優于其他脫硝催化劑;(3) 相同的催化效率,波紋式催化劑使用的活性原料少,每立方米質量比蜂窩式輕(50~100) kg,以100 m3計算,催化劑原料使用量降低(5~10) t;(4) 制備工藝相對簡單,生產自動化程度高。
自20世紀60年代末開始,日本的三菱、武田化工和日立三家公司研制出以TiO2為基材的催化劑,并逐漸取代Pt-Rh和Pt系列催化劑。該類催化劑主要由V2O5(WO3)、Fe2O3、CrOx、CuO、MnOx、MoO3、NiO和MgO等金屬氧化物或有聯合作用的混和物構成,通常以TiO2、ZrO2、Al2O3、SiO2和AC等作為載體,與SCR系統中的液氨或CO(NH2)2等還原劑發生還原反應,成為電廠SCR脫硝工程中應用較廣泛的主流催化劑產品。
國內主流SCR脫硝催化劑核心技術為美國、日本、韓國、丹麥和德國等國家壟斷,技術壁壘高,我國主要靠高成本引進技術進行生產經營。大榮環保科技有限公司引進韓國先進技術,建成國內首個9 000 m3·a-1波紋式脫硝催化劑項目,現已在西安經濟開發區啟源裝備園區投產。
2脫硝催化劑催化分解PCDDs/PCDFs
PCDDs/PCDFs化學性質相對穩定,對生物具有很大的毒害性,因此,如何去除PCDDs/PCDFs的研究受到重視。能催化分解PCDDs/PCDFs的催化劑有貴金屬催化劑和過渡金屬催化劑,雖然貴金屬催化劑催化分解PCDDs/PCDFs的效率最高可達90%,但貴金屬資源稀缺,價格昂貴,在批量生產和應用中受到限制;以過渡金屬作為催化劑活性組分的主要有VOx、MnOx、CrOx和FeOx等,其中,VOx催化活性最高,V2O5/TiO2催化劑分解PCDDs/PCDFs的效果最好[14]。V2O5-WO3/TiO2催化劑可同時用于催化還原NOx和催化分解PCDDs/PCDFs[15]。

3脫硝催化劑催化氧化汞的性能
燃煤產生的汞約占人為釋放量的30%,在燃煤煙氣中,汞通常以單質汞Hg0、氣態二價汞Hg2+及固態顆粒汞Hgp形式存在,其中,Hg0約占煙氣中汞含量的70%[25]。Hg2+與固態顆粒汞Hgp可通過濕法脫硫、煙氣除塵和MCFB煙氣凈化系統去除[26-27]。但Hg0易揮發且不溶于水,可通過吸附劑除去煙氣中的Hg0[28-32]。通過對煤采用沉重分離、程序升溫熱解、酸性提取和SSE技術等研究無煙煤、褐煤和瀝青煤釋放汞的溫度條件以及吸收方法進行預處理[33],研究[34-36]發現,在溫度低于150℃、(150~250)℃、(250~400)℃和(400~600)℃時,汞分別以單質汞Hg0、HgCl2、HgS和硫鐵礦鍵配位Hg形式釋放,HNO3提取法對除去硫鐵鍵配位汞具有較好的效果。工業用V-Ti基脫硝催化劑通過催化氧化能夠有效地將Hg0氧化成Hg2+[37-38 ]。

4結語與展望
雖然V系脫硝催化劑在催化氧化汞和催化分解PCDDs/PCDFs方面已有研究,但V-Ti基催化劑催化氧化Hg0和催化分解PCDDs/PCDFs的條件與催化還原NOx的條件存在差異,一是活性溫度不同,催化氧化Hg0的最佳活性溫度為(300~350)℃,催化分解PCDDs/PCDFs的最佳活性溫度為(200~300)℃,而催化還原NOx的最佳活性溫度為(300~420)℃;二是修飾劑的影響,在V-Ti基催化劑中加入修飾成分WO3(MoO3)后有利于促進Hg0和NOx的催化氧化還原反應,但對PCDDs/PCDFs的催化分解有抑制作用。研究V-Ti基催化劑催化分解PCDDs/PCDFs時,PCDDs/PCDFs主要是采用多氯苯和芳香烴混合而成的模擬氣體進行研究,所得實驗結果可能存在一定偏差。針對V-Ti基催化劑應用技術研究還有待進一步深入:
(1) 深入對V-Ti基催化劑成型工藝研究。雖然在國外波紋式V-Ti基脫硝催化劑技術已成熟,但由于國內煙氣成分和相應成分含量不同,因此,研究適合國內生產的波紋式V-Ti基脫硝催化劑應用技術或催化劑成型產品迫在眉睫。
(2) 深入對V-Ti基催化劑催化氧化Hg0和催化分解PCDDs/PCDFs的機理及影響因素研究。研究加入不同修飾劑修飾V-Ti基催化劑催化氧化Hg0的機理影響,進一步提高V-Ti基催化劑催化氧化Hg0的效率;研究催化分解真正的PCDDs/PCDFs,真正了解催化分解PCDDs/PCDFs的機理和影響因素。
(3) 深入對工業用V-Ti催化劑改性研究。加深對現有V-Ti基催化劑改性研究,使改性后的V2O5-WO3(MoO3)/TiO2催化劑在最佳脫硝條件下能同時得到催化氧化Hg0和催化分解PCDDs/PCDFs的效率。
參考文獻:
[1]曹志勇,譚城軍,李建中,等.燃煤鍋爐SCR煙氣脫硝系統噴氨優化調整試驗[J].中國電力,2011,44(11):55-58.
Cao Zhiyong,Tan Chengjun,Li Jianzhong,et al.Experiment of optimization adjustment for ammonia injection of selective catalytic reduction flue gas denitration system in coal-fired boiler[J].Electric Power,2011,44(11):55-58.
[2]方朝君,金理鵬,宋玉寶,等.SCR脫硝系統噴氨優化及最大脫硝效率試驗研究[J].熱力發電,2014,43(7):157-160.
Fang Zhaojun,Jin Lipeng,Song Yubao,et al.Performance optimization and maximum denitration efficiency analysis for SCR-DeNOx power plants[J].Thermal Power Generation,2014,43(7):157-160.
[3]中國環境保護產業協會脫硫脫硝委員會.我國脫硫脫硝行業2013年發展綜述[J].中國環保產業,2014,(9):4-15.
[4]武寶會,崔利.火電廠SCR煙氣脫硝控制方式及其優化[J].熱力發電,2013,42(10):116-119.
Wu Baohui,Cui Li.SCR flue gas denitrification control and optimization in thermal power plants[J].Thermal Power Generation,2013,42(10):116-119.
[5]Patrick G W A Kompio,Angelika Bruckner,Frank Hipler,et al.A new view on the relations between tungsten and vanadium in V2O5-WO3/TiO2catalysts for the selective reduction of NO with NH3[J].Journal of Catalysis,2012,286:237-247
[6]尤振豐,丁明,方文倉,等.水泥行業煙氣脫硝技術綜述及展望[J].廣東建材,2013,29(5):29-33.
[7]邢雨薇.鋼鐵行業燒結煙氣脫硫工序節能減排方案研究[D].長春:吉林農業大學,2014.
Xing Yuwei.Study on sintering flue gas desulfurization process of energy-saving emission reduction of iron and steel industry[D].Chuangchun:Jilin Agricultural University,2014.
[8]劉慶祎.水泥窯爐SCR反應器流場數值模擬研究[D].北京:北京工業大學,2014.
Liu Qingyi.The numerical simulation of flow field in cement kilns SCR reactor[D].Beijing:Beijing University of Technology,2014.
[9]佘志偉,隋榮祿,孫振海.水泥窯爐煙氣脫硝技術的比選分析與工程實踐[J].江西建材,2015,(2):4-5.
[10]陳佳琦,高爽,李軍,等.2,2,6,6-四甲基哌啶-1-氧自由基促進的釩基催化劑催化苯直接氧化制苯酚[J].催化學報,2011,32(9):1446-1451.
Chen Jiaqi,Gao Shuang,Li Jun,et al.2,2,6,6-Tetramethylpiperidine-1-oxy-promoted hydroxylation of benzene to phenol over a vanadium-based catalyst using molecular oxygen[J].Chinese Journal of Catalysis,2011,32(9):1446-1451.
[11]Sindra L Summoogum,Dominika Wojtalewicz,Mohammednoor Altarawneh,et al.Formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F) by precursor pathways in oxidation of pesticide alpha-cypermethrin[J].Proceedings of the Combustion Institute, 2013,34:3499-3507.
[12]Raik Stollea,Heinz Koesera,Heinz Gutberletb.Oxidation and reduction of mercury by SCR DeNOx catalysts under flue gas conditions in coal fired power plants[J].Applied Catalysis B:Environmental,2014,144:486-497.
[13]宋存義,常冠欽,董震松,等.一種波紋板式SCR脫硝催化劑結構:中國,CN202263606U[P].2012-06-06.
[14]Chia Cheng Yang,Shu Hao Chang,Bao Zhen Hong,et al.Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5-WO3/TiO2based catalysts[J].Chemosphere,2008,73:890-895.
[15]Grzegorz Wielgosiński.The possibilities of reduction of polychlorinated dibenzo-pdioxins and polychlorinated dibenzofurans emission[J].International Journal of Chemical Engineering,2010,7(10):1-11.
[16]Bertinchamps F,Gregoire C,Gaigneaux E M.Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics:part Ⅱ:Influence of the nature and addition protocol of secondary phases to VOx/TiO2[J].Applied Catalysis B:Environmental,2006,66:10-22.
[17]Albonetti S,Mengou J E,Trifiro F.Polyfunctionality of DeNOx catalysts in other pollutant abatement[J].Catalysis Today,2007,119:295-300.
[18]Debecker D P,Bertinchamps F,Blangenois N,et al.On the impact of the choice of model VOC in the evaluation of V-based catalysts for the total oxidation of dioxins:furan vs. chlorobenzene[J].Applied Catalysis B:Environmental,2007,74:223-232.
[19]Debecker D P,Delaigle R,Eloy P,et al.Abatement of model molecules for dioxin total oxidation on V2O5-WO3/TiO2catalysts:the case of substituted oxygen-containing VOC[J].Journal of Molecular Catalysis A:Chemical,2008,289(1/2):38-43.
[20]Damien P Debecker,Romain Delaigle,Pao Chen Hung,et al.Evaluation of PCDD/F oxidation catalysts:confronting studies on modelmolecules with tests on PCDD/F-containing gas stream[J].Chemosphere,2011,82:1337-1342.
[21]Roland Weber,Takeshi Sakurai,Hanspaul Hagenmaier.Low temperature decomposition of PCDD/PCDF,chlorobenzenes and PAHs by TiO2-based V2O5-WO3catalysts[J].Applied Catalysis B:Environmental,1999,20:49-256.
[22]Ji Shasha,Li Xiaodong,Ren Yong,et al.Ozone-enhanced oxidation of PCDD/Fs over V2O5-TiO2-based catalyst[J].Chemosphere,2013,92:265-272.
[23]Chang Shu Hao,Chi Kai Hsien,Young Chi Wei,et al.Effect of fly ash on catalytic removal of gaseous dioxins over V2O5-WO3catalyst of a sinter plant[J].Environmental Science & Technology,2009,43(19):7523-7530.
[24]Stieglitz L.The oxidative degradation of carbon and its role in the de-novo-synthesis of organohalogen compounds in fly ash[J].Chemosphere,1993,27:343-350.
[25]李建榮,何熾,商雪松,等.SCR脫硝催化劑對煙氣中零價汞的氧化效率研究[J].燃料化學學報,2012,40(2):241-246.
Li Jianrong,He Chi,Shang Xuesong,et al.Oxidation efficiency of elemental mercury in flue gas by SCR De-NOx catalysts[J].Journal of Fuel Chemistry and Technology,2012,40(2):241-246.
[26]莊燁,劉科偉,路光杰.用于煙氣除汞的煙氣調質劑及其復合煙氣凈化方法:中國,CN103223290A[P].2013-07-31.
[27]劉海蛟.MCFB煙氣凈化系統的多種污染物協同脫除研究[D].杭州:浙江大學,2009.
Liu Haijiao.Study on simultaneous removal of multi pollutant in MCFB flue gas cleaning system[D].Hangzhou:Zhejiang University,2009.
[28]孔凡海.鐵基納米吸附劑煙氣脫汞實驗及機理研究[D].武漢:華中科技大學,2010.
Kong Fanhai.Experimental and mechanism study of elemental mercury removal in flue gas by Fe-based nano-sorbent[D].Wuhan:Huazhong University of Science and Technology,2010.
[29]丁峰.礦物吸附劑對燃煤煙氣中汞的脫除機制的研究[D].武漢:華中科技大學,2012.
Ding Feng.Mechanism study of elemental mercury removal from coal combustion flue gases by mineral sorbents[D].Wuhan:Huazhong University of Science and Technology,2012.
[30]譚增強.改性竹炭基吸附劑脫汞的實驗及機理研究[D].武漢:華中科技大學,2012.
Tan Zengqiang.Experimental and mechanism study of elemental mercury removal in flue gas by modified bamboo-based sorbents[D].Wuhan:Huazhong University of Science and Technology,2012.
[31]張潤圃.P84摻炭纖維性能表征及其脫除燃煤煙氣Hg0的試驗研究[D].武漢:東華大學,2010.
Zhang Renpu.Performance of modificated P84-MCF and experimental study on adsorption of mercury[D].Wuhan:Donghua University,2010.
[32]劉松濤.煙氣同時脫除Hg0、SO2和NOx的實驗研究[D].保定:華北電力大學,2009.
Liu Songtao.Experimental study on simultaneous removal of Hg0,SO2and NOx from flue gas[D].Baoding:North China Electric Power University,2009.
[33]Luo Guangqian,Ma Jingjing,Han Jun,et al.Hg occurrence in coal and its removal before coal utilization[J].Fuel,2013,104:70-76.
[34]郭志航.褐煤熱解分級轉化多聯產工藝的關鍵問題研究[D].杭州:浙江大學,2015.
Guo Zhihang.Research on key issues of lignite pyrolysis-based staged conversion polygeneration technology[D].Hangzhou:Zhejiang University,2015.
[35]王欽.煤燃燒過程中易揮發元素(Hg、As、Se)遷移規律研究[D].天津:天津大學,2014.
Wang Qin.The study of transformation regularities of volatile trace elements(Hg,As,Se) during coal combustion[D].Tianjin:Tianjin University,2014.
[36]羅光前.燃煤汞形態識別及其脫除的研究[D].武漢:華中科技大學,2009.
Luo Guangqian.Study of species identification and removal of mercury in coal and during coal combustion[D].Wuhan:Huazhong University of Science and Technology,2009.
[37]Pudasainee Deepak,Lee Sung Jun,Lee Sang-Hyeob,et al.Effect of selective catalytic reactor on oxidation and enhanced removal of mercury in coal-fired power plant[J].Fuel,2010,89(4):804-809.
[38]Li Hailong,Li Ying,Wu Changyu,et al.Oxidation and capture of elemental mercury over SiO2-TiO2-V2O5catalysts in simulated low-rank coal combustion flue gas[J].Chemical Engineering Journal,2011,169(1/3):186-193.
[39]Manuela Rallo,Barna Heidel,Kevin Brechtel,et al.Effect of SCR operation variables on mercury speciation[J].Chemical Engineering Journal,2012,198:87-94.
[40]Sandhya Eswaran,Harvey G Stenger.Effect of halogens on mercury conversion in SCR catalysts[J].Fuel Processing Technology,2008,89(11):1153-1159.
[41]Raik Stolle,Heinz Koser,Heinz Gutberlet.Oxidation and reduction of mercury by SCR DeNOx catalysts under flue gas conditions in coal fired power plants[J].Applied Catalysis B:Environmental,2014,144:486-497.
[42]Gao Wei,Liu Qingcai,Wu Changyu,et al.Kinetics of mercury oxidation in the presence of hydrochloric acid and oxygen over a commercial SCR catalyst[J].Chemical Engineering Journal,2013,220:53-60.
[43]周黎明.基于量子化學計算的汞氧化動力學研究[D].北京:華北電力大學,2014.
Zhou Liming.Study on oxidation kinetics of mercury based on quantum chemistry calculation[D].Beijing:North China Electric Power University,2014.
[44]侯文慧.模擬煤氣條件下金屬氧化物吸附脫除單質汞的機理研究[D].杭州:浙江大學,2015.
Hou Wenhui.Mechanism study on the removal of elemental mercury from simulated syngass over matal oxide sorbents[D].Hangzhou:Zhejiang University,2015.
[45]Wan Qi,Duan Lei,Li Junhua,et al.Deactivation performance and mechanism of alkali (earth) metals on V2O5-WO3/TiO2catalyst for oxidation of gaseous elemental mercury in simulated coal-fired flue gas[J].Catalysis Today,2011,175(1):189-195.
[46]云端,宋薔,姚強.V2O5-WO3/TiO2催化劑的失活機理及分析[J].煤炭轉換,2009,32(1):91-95.
Yun Duan,Song Qiang,Yao Qiang.Mechanism and analysis of SCR catalyst deactivation[J].Coal Conversion,2009,32(1):91-95.
Research status of V-Ti-based denitrification catalysts for removal of Hg and PCDDs/PCDFs
Tian Junji1*, Yang Shengfen2, Lu Zou1, Shi Yu1
(1.Economic and Information Bureau of Zhong Mountain Area of Liupanshui City, Liupanshui 553001,Guizhou, China; 2.Xinhe Huijin Consulting (Beijing) Co. Ltd, Liupanshui 553001, Guizhou, China)
Abstract:The composite corrugated support frames were prepared by using the soft fibers and creasing steel mesh.The monolithic corrugated denitrification catalysts were prepared by loading V-Ti-based De-NOx catalysts onto corrugated support frames.The current major preparation processes,main advantages and research status of V-Ti-based corrugated denitrification catalysts at home and abroad were reviewed.Compared V-Ti-based denitrification catalysts with noble metal denitrification catalysts,both catalysts possessed the same catalytic decomposition effects of PCDDs/PCDFs,but the manufacturing cost of V-Ti-based denitrification catalysts was lower than those of noble metal denitrification catalysts.V-Ti-based denitrification catalysts with different active components,vanadium contents and reaction activity temperatures exhibited different catalytic decomposition effects of PCDDs/PCDFs.The highest catalytic decomposition rate was 97.7%.The researchers obtained different catalytic effects of V-Ti-based denitrification catalysts for oxidation of Hg0.The research status of V-Ti-based denitrification catalyst for catalytic oxidation of Hg0 oxidation was introduced.
Key words:three waste disposal and comprehensive utilization; V-Ti based denitrification catalyst; corrugated denitrification catalyst; Hg; PCDDs/PCDFs
收稿日期:2015-11-12;修回日期:2016-04-12
作者簡介:田軍吉,1987年生,男,貴州省銅仁市人,主要從事新型環保材料、工業煙氣排放后處理技術和柴油煙氣催化凈化研究。
doi:10.3969/j.issn.1008-1143.2016.05.005 10.3969/j.issn.1008-1143.2016.05.005
中圖分類號:TQ426.6;X701
文獻標識碼:A
文章編號:1008-1143(2016)05-0025-06
通訊聯系人:田軍吉。