(2)
r=r(R),θ=Θ,z=-λZ
(3)
式中:r(R)為翻轉后的半徑,λ為軸向伸長率,且a=r(B),b=r(A).
伸長張量主值、Cauchy應力主值以及簡化后的平衡微分方程如下:
λ1=-r′,λ2=r/R,λ3=λ
(4)
Jσii=λiWi(i=1,2,3,不求和)
(5)
Rr″W11+(λ1+λ2)W12-W1-W2=0
(6)
式中:r′=dr/dR,Wi=?W/?λi,Wij=?2W/?λi?λj(i,j=1,2,i≠j).對于可壓縮材料,由J=λ1λ2λ3>0可知r′<0.


C1(j1-3)+C2(j2-3)+C3(j3-1)
(7)
其中j1=i1,j2=i2/i3,j3=i3;C1、C2和C3是材料常數,有如下定義:
其中μ和υ是在無窮小變形下的剪切模量和泊松比,μ>0,0<υ<1/3.作者研究了關于此類可壓縮材料組成的球體的空穴分岔問題.本文擬研究此類可壓縮超彈性材料組成的圓柱管翻轉有限變形問題.
由于翻轉后圓柱管內外表面無應力,得到邊界條件
σ11(a)=σ11(b)=0, 0≤θ≤2π, -λL≤z≤0
(8)
假設端部合力為零,近似平均端部條件為
(9)
2數值求解及算例
將式(7)代入方程(6)及邊界條件(8)和(9),得到下面方程:
(10)
(11)
(12)
(13)
將式(13)代入方程(10)~(12),并利用Ci(i=1,2,3)的表示式,可得

r′(A)=-{[r(A)2-r(B)2+A2-B2]/
[r(A)2-r(B)2+(A2-B2)×
(λ-2+(λ-λ-1)r(A)/A)]}1/2;
r′(B)=-{[r(A)2-r(B)2+A2-B2]/
[r(A)2-r(B)2+(A2-B2)×
(λ-2+(λ-λ-1)r(B)/B)]}1/2
(14)
顯然,方程(14)構成了一個典型的二階非線性常微分方程邊值問題.經典的打靶法是利用一個邊界條件和微分方程聯立,將問題化為初值問題進行求解,然后再通過另一個邊界條件修正,從而得到達到精度要求的數值解.而邊值問題(14)的邊界條件非常規,是關于翻轉后內、外半徑以及軸向伸長率三者之間的關系式,所以經典打靶法不適用.本文提出一種改進的打靶法,其主要思想是先給定兩個變量,利用第一邊界條件和微分方程聯立,運用四階龍格-庫塔方法,得到第三變量,修正上述變量中的一個;同時利用第二邊界條件和微分方程聯立,運用四階龍格-庫塔方法,得到另一個第三變量,從而修正另一變量.這樣,通過兩次修正得到關于翻轉后內、外半徑以及軸向伸長率三者之間的關系.數值上討論了結構參數和材料參數對有限變形的影響,參見圖1~3,其中δ=A/B,η=a/b.
圖1揭示了初始厚度對圓柱管翻轉后厚度的影響.由圖1(a)可見,對于給定的υ,翻轉厚度η隨著初始厚度δ的增加而增大,而泊松比υ對變形厚度的影響不大;圖1(b)是局部放大圖.對比趙巍等[5]研究的不可壓縮材料組成的翻轉圓柱管的有限變形問題,發現初始厚度對圓柱管翻轉后厚度的影響是類似的.


(a) η - δ

(b) 局部放大
圖1不同υ下的η-δ曲線
Fig.1Curves ofηversusδfor various values ofυ
圖2揭示了軸向伸長率和翻轉前后圓柱管厚度的關系.由圖可見,軸向伸長率λ隨著厚度的增加而增大,隨著泊松比的增加而減小,且λ<1.即圓柱管處于壓縮的狀態.進一步地,可以看出翻轉后圓柱管的厚度變小,這與不可壓縮材料在變形過程中的狀態改變是不同的.
圖3揭示了不同υ下的應力分布.容易看出翻轉后圓柱管的內部σ11<0,圓柱管表面σ11≤0,這與邊界條件相吻合.σ22和σ33隨著翻轉后半徑的增加而增大.應力的性質與文獻[7]中的可壓縮材料的相應性質相似.而且,可以看出泊松比υ對于翻轉后應力的影響不大.

圖2 不同υ下δ,η-λ曲線

圖3 不同υ下的應力分布
3結語
本文得到了由一類可壓縮超彈性材料組成的薄壁圓柱管翻轉有限變形邊值問題的數值解:
(1)初始厚度δ越大,翻轉后圓柱管厚度η越大;
(2)初始厚度δ越大,軸向伸長率λ越大,且圓柱管處于壓縮狀態;
(3)泊松比越大,軸向伸長率λ越小.
與文獻[11]中所考慮的可壓縮材料(可求得翻轉精確解)相比,可以發現初始厚度、軸向伸長率以及翻轉后厚度之間的關系具有比較類似的性質.與此同時,與文獻[5]中考慮的不可壓縮材料相比,翻轉變形前后圓柱管厚度的關系相類似.
本文考慮的是穩定狀態下圓柱管翻轉后的有限變形問題.針對可壓縮材料,通過比較,證明了改進的打靶法的有效性.這也為解決其他可壓縮材料組成的結構體的翻轉問題提供了一種方法.在此基礎上,后續可以考慮利用增量方程的方法研究翻轉失穩問題,討論導致失穩的控制參數的臨界值.
參考文獻:
[1] 羅云華. 翻管變形機理及翻管成形極限的研究[D]. 武漢:華中科技大學, 2007.
LUO Yun-hua. Research on deformation mechanism and forming limits of tube inversion [D]. Wuhan:Huazhong University of Science and Technology, 2007. (in Chinese)
[2]Rivlin R S. Large elastic deformations of isotropic materials. VI. Further results in the theory of torsion, shear and flexure [J]. Philosophical Transactions of the Royal Society A, 1949, A242:173-195.
[3]Chadwick P, Haddon E W. Inflation-extension and eversion of a tube of incompressible isotropic elastic material [J]. Journal of the Institute of Mathematics and Its Applications, 1972, 10(2):258-278.
[4]Haughton D M, Orr A. On the eversion of incompressible elastic cylinders [J]. International Journal of Non-linear Mechanics, 1995, 30(2):81-95.[5]趙 巍,袁學剛,張洪武,等. 翻轉后的不可壓縮neo-Hookean圓柱管的有限變形[J]. 固體力學學報, 2012, 33(4):404-407.
ZHAO Wei, YUAN Xue-gang, ZHANG Hong-wu,etal. Finite deformation of everted cylindrical shells composed of incompressible neo-Hookean materials [J]. Acta Mechanica Solida Sinica, 2012, 33(4):404-407. ( in Chinese)
[6]Haughton D M, Chen Y-C. On the eversion of incompressible elastic spherical shells [J]. Zeitschrift für Angewandte Mathematik und Physik, 1999, 50(2):312-326.
[7]Carroll M M, Horgan C O. Finite strain solutions for a compressible elastic solid [J]. Quarterly Applied Mathematics, 1990, 48:767-780.
[8]Haughton D M, Orr A. On the eversion of compressible elastic cylinders [J]. International Journal of Solids and Structures, 1997, 34(15):1893-1914.
[9]Haughton D M, Chen Y-C. Asymptotic bifurcation results for the eversion of elastic shells [J]. Zeitschrift für Angewandte Mathematik und Physik ZAMP, 2003, 54(2):191-211.
[10]Haughton D M. Further results for the eversion of highly compressible elastic cylinders [J]. Mathematics and Mechanics of Solids, 1996, 1(4):355-367.
[11]ZHAO W, YUAN X G, ZHANG H W. Exact solutions of finite deformation for everted compressible hyperelastic cylindrical tubes [J]. Computers, Materials and Continua, 2014, 43(2):75-86.
[12]SHANG Xin-chun, CHENG Chang-jun. Exact solution for cavitated bifurcation for compressible hyper-elastic materials [J]. International Journal of Engineering Science, 2001, 39(10):1101-1117.
文章編號:1000-8608(2016)04-0331-04
收稿日期:2015-12-10;修回日期: 2016-05-28.
基金項目:遼寧省教育廳省高校優秀人才支持計劃資助項目(LR2012044);中央高校基本科研業務費專項資金資助項目(DC201502050203).
作者簡介:趙 巍(1982-),女,博士生,E-mail: zhaowei1982122@126.com;袁學剛*(1971-),男,教授,E-mail:yxg1971@163.com;張洪武(1964-),男,教授,E-mail:zhanghw@dlut.edu.cn.
中圖分類號:O343.5
文獻標識碼:A
doi:10.7511/dllgxb201604001
Influences of structure and material parameter on everted deformation for a cylindrical tube composed of compressible hyperelastic materials
ZHAOWei1,2,YUANXue-gang*1,2,ZHANGHong-wu1
( 1.State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China;2.School of Science, Dalian Nationalities University, Dalian 116600, China )
Abstract:The everted tubes, which can be regarded as an ideal anti-collision energy absorbing component, are widely applied to engineering design, aerospace and many other fields of real life. The problem of finite deformation is examined for a thin-walled everted cylindrical tube composed of a class of compressible hyperelastic materials, and then it is described as a class of boundary value problems (BVPs) of a certain second-order nonlinear ordinary differential equation (ODE). Since the exact solution can not be obtained, and the classical numerical methods are not suitable, a modified shooting method is proposed to solve this class of BVPs effectively, and the quantitative behaviors of the solutions are analyzed. The numerical results reveal the thickness and the axial stretch rate of the everted cylindrical tube increase with the increasing initial thickness, and the cylindrical tube is in the state of compression; the axial stretch rate decreases with the increasing Possion′s ratio. Moreover, the obtained conclusions are also compared with those for the incompressible cases.
Key words:compressible hyperelastic material; cylindrical tube; eversion; modified shooting method