999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

人參中三萜類化學成分的研究△

2016-09-25 00:52:04楊秀偉
中國現(xiàn)代中藥 2016年1期

楊秀偉

(北京大學 天然藥物及仿生藥物國家重點實驗室,北京大學 藥學院 天然藥物學系,北京 100191)

人參中三萜類化學成分的研究△

楊秀偉*

(北京大學 天然藥物及仿生藥物國家重點實驗室,北京大學 藥學院 天然藥物學系,北京100191)

人參皂苷系人參根和根莖的活性成分,參與調節(jié)多種生理活性。在我們前文總結的基礎上,本文概述人參根和根莖、莖葉、果實、種子和紅參中三萜類化學成分的研究,為源于人參的現(xiàn)代中藥的研究與開發(fā)提供科學依據。迄今,已從人參分離鑒定了201個三萜類化合物,其中189個歸屬為達瑪烷型三萜及其衍生物,10個歸屬為齊墩果酸型三萜,2個歸屬為羽扇豆烷型三萜;不但在含量上,而且在化學結構多樣性上,達瑪烷型三萜及其衍生物占絕對優(yōu)勢地位。

人參;莖葉;花蕾;果實;種子;紅參;人參皂苷;三萜

五加科(Araliaceae)人參屬(PanaxL.)植物人參PanaxginsengC.A.Meyer系馳名中外的植物藥,傳統(tǒng)藥用部位為干燥根和根莖(Ginseng Radix et Rhizoma),始載于《神農本草經》。《本草綱目拾遺》亦記載人參葉代人參根之藥用,“味苦微甘”,“清肺、生津、止渴”;近代,《中華人民共和國藥典》一部不但收載了人參根和根莖為法定藥用部位,《中華人民共和國藥典》2005版亦收載了人參葉、《中華人民共和國藥典》2010版和2015版收載了人參總皂苷和人參莖葉總皂苷。現(xiàn)代藥理學和生物學活性研究表明人參中的三萜或三萜皂苷類化合物幾乎反映了人參的全部藥物學作用。人參根和根莖中的人參皂苷(ginsenosides,G)含量約為3~5%,以達瑪烷型(dammarane-type)四環(huán)三萜及其皂苷為特征性成分,根據苷元結構不同,可分為原人參二醇型(protopanaxadiol-type,I型),如G-Rb1、Rb2、Rc和Rd;原人參三醇型(protopanaxatriol-type,II型),如G-Re、Rf、Rg1;為主要人參皂苷,含量之和約占總皂苷的90%以上,較高,稱之為常見人參皂苷。而一些低極性的人參皂苷如G-Rg2、Rg3、Rg5、Rg6、Rh1、Rh2、Rk1、Rk3、F4等,在人參根和根莖中含量很低或不含(但在紅參或地上部分中含有),稱之為稀有人參皂苷(rare ginsenosides)。稀有人參皂苷多為常見人參皂苷的脫糖基化產物,疏水性和穿越細胞性增強,如G-Rg3、Rh1、Rh2、Rh3有更強的抗腫瘤、抗癌細胞轉移、保肝、保護神經、免疫刺激和血管擴張活性。人參化學研究表明,人參地上部分含有化學結構多樣性的稀有人參皂苷。此外,人參中還含有齊墩果酸型(oleanolic acid-type,III型)苷元結構的皂苷,以及少量奧克梯隆型(ocotillone-type,IV型)苷元結構的皂苷(見圖1),嚴格地講,奧克梯隆型是達瑪烷型的衍生物。為全面揭示人參藥物學作用的物質基礎、闡明人參三萜類化合物結構多樣性與生物學活性多樣性的關系、尋找優(yōu)秀的藥物分子以研究開發(fā)源于人參的現(xiàn)代中藥奠定基礎,前文總結了人參根和根莖及其工業(yè)產品紅參[1]、人參莖葉[2]化學成分的研究,本文進行補遺,并總結人參花蕾、果實等中的三萜類化學成分的研究。

1 人參根、根莖及其工業(yè)產品紅參

前文[1]總結了人參根、根莖及其工業(yè)產品紅參中的70個三萜皂苷。2012年,文獻報道[3]以正交色譜-液相色譜質譜聯(lián)用為導向,從人參根分離鑒定了2個新的化合物,人參皂苷(ginsenoside)IV(1)和V(2),以及已知結構的三七皂苷(notoginsenoside;NG)A(3)、K(4)。2015年又報道從人參根分離鑒定出達瑪烷型的絞股藍皂苷V(gypenosideV)、6-O-[α-L-吡喃鼠李糖基-(1→2)-β-D-吡喃葡萄糖基]-20-O-β-D-吡喃葡萄糖基-3β,12β,20(S)-二羥基-達瑪-25-烯-24-酮{6-O-[α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranosyl]-20-O-β-D-glucopyranosyl-3β,12β,20(S)-dihydroxy-dammar-25-en-24-one}、珠子參皂苷F6(majoroside F6)、擬人參皂苷Rt3(pseudogin-senoside-Rt3)、越南人參皂苷R15(vinaginsenoside-R15)和齊墩果烷型的金盞花皂苷B(齊墩果酸-3-O-β-D-吡喃葡萄糖醛酸苷;calenduloside B)[4]。從紅參分離鑒定了人參皂苷Re2(ginsenoside Re2)、20(R)-人參皂苷Rs3[20(R)-ginsenoside Rs3,5][5]、20(S)-人參皂苷-Rf-1a[20(S)-ginsenoside-Rf-1a,6][6]、20(R)-人參皂苷Rf[20(R)-ginsenoside Rf,7]、20(R)-三七皂苷R2[20(R)-notoginsenoside R2,8]、20(22)Z-人參皂苷Rs4[20(22)Z-ginsenoside Rs4=20(Z)-ginsenoside Rs4,9][6]、人參皂苷Rz1(ginsenoside Rz1,10)[5]、20(22)E-人參皂苷Rg9[20(22)E-ginsenoside Rg9=20E-ginsenoside Rg9,11][5,7]、3β,12β-二羥基達瑪-20(22)E,24-二烯-6-O-β-D-吡喃木糖基-(1→2)-O-β-D-吡喃葡萄糖苷(3β,12β-dihydroxydammar-20(22)E,24-diene-6-O-β-D-xylopyranosyl-(1→2)-O-β-D-glucopyranoside,12)[5]、12-O-葡萄糖基人參皂苷Rh4(12-O-glucoginsenoside Rh4,13)[8]、20(22)Z-人參皂苷Rg9[20(22)Z-ginsenoside Rg9=20Z-ginsenoside Rg9,14][7]、20(22)Z-人參皂苷Rh4[20(22)Z-ginsenoside Rh4,15]、20(22)Z-人參皂苷F4[20(22)Z-ginsenoside F4=ginsenoside F4=ginsenoside Rg4,16][5]、人參皂苷Rg10[ginsenoside Rg10,17][7]、12β,25-二羥基達瑪-20(22)E-烯-3-O-β-D-吡喃葡萄糖基-(1→2)-O-β-D-吡喃葡萄糖苷[12β,25-dihydroxydammar-20(22)E-ene-3-O-β-D-glucopyranosyl-(1→2)-O-β-D-glucopyranoside,18][5]、人參皂苷Rh10(ginsenoside Rh10,19)、人參皂苷Rg11(ginsenoside Rg11,20)[8]、23-O-甲基人參皂苷Rg11(23-O-methylginsenoside Rg11,21)[6],上述化合物均為達瑪烷型三萜皂苷。同時,從紅參還分離鑒定了齊墩果酸型皂苷:人參皂苷Ro-甲酯(ginsenoside Ro methyl ester)、聚乙炔基人參皂苷Ro(polyacetyleneginsenoside Ro)[5]、人參皂苷Ro-6′-丁酯(ginsenoside-Ro-6′-butyl ester,22)[6]、竹節(jié)參苷IVa甲酯(chikusetsusaponin IVa methyl ester,23)、竹節(jié)參苷IVa丁酯(chikusetsu-saponin IVa butyl ester,24)、姜狀三七苷R1-6′-丁酯(zingibroside R1-6′-butyl ester],25)和姜狀三七苷R1-6′-甲酯(zingibroside R1-6′-methyl ester,26)[5]。

2 人參莖葉

由于人參莖葉中含有結構多樣性的稀有達瑪烷型三萜及其皂苷,近年來得到重視。前文[2]總結了從人參莖葉中分離鑒定的58個三萜類化合物。近年來又從人參莖葉中分離鑒定出人參皂苷(ginsenoside)Rh14(27)、Rh15(28)、Rh16(29)、Rh17(30)[9]、Rh18(31)、Rh19(32)、Rh20(33)[10],達瑪-20(22)E,25-二烯-3β,6α,12β,24S-四醇[dammara-(20)22E,25-diene-3β,6α,12β,24S-tetrol,34],12β,23R-環(huán)氧達瑪-24-烯-3β,6α,20S-三醇(12β,23R-epoxydammara-24-ene-3β,6α,20S-triol,35)[10],三七皂苷B1(sanchinoside B1,36),3β,6α,12β,25-四羥基達瑪-20(22)E-烯-6-O-α-L-吡喃鼠李糖基-(1→2)-β-D-吡喃葡萄糖苷[3β,6α,12β,25-tetrahydroxydammar-20(22)E-ene-6-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside,37],達瑪-20(22)E-烯-3β,6α,12β,25-四醇[dammar-20(22)E-ene-3β,6α,12β,25-tetraol,38],人參皂苷(ginsenoside)Rg5、Rh4、Rk1、Rk3,達瑪-20(21),24-二烯-3β,6α,12β-三醇[dammar-20(21),24-diene-3β,6α,12β-triol,39],三七皂苷T2(notoginsenoside T2,40)[11],20(S)-原人參二醇[20(S)-protopanaxadiol,41],20(S)-原人參三醇[20(S)-protopanaxatriol,42],20(S)-人參皂苷Rf2[20(S)-Ginsenoside-Rf2,43][12]。從人參葉分離鑒定出對肝癌HepG2細胞有細胞毒活性的20(R),22(ζ),24(S)-達瑪-25(26)-烯-3β,6α,12β,20,22,24-六醇[20(R),22(ζ),24(S)-dammar-25(26)-ene-3β,6α,12β,20,22,24-hexanol,44][13];對肝癌Hep3B和肺癌A549細胞有細胞毒活性的3-O-β-D-吡喃葡萄糖基-20(S)-原人參三醇[3-O-β-D-glucopyranosyl-20(S)-proto-panaxtriol,45]、3-甲酰氧基-20-O-β-D-吡喃葡萄糖基-20(S)-原人參三醇[3-formyloxy-20-O-β-D-glucopyranosyl-20(S)-protopanaxatriol,46]和26-羥基-24(E)-20(S)-原人參三醇[26-hydroxyl-24(E)-20(S)-protopanaxatriol,47][14];對脂多糖刺激的鼠性巨噬細胞白細胞介素-12表達有促進作用的3β,20(S)-二羥基達瑪-24-烯-12β,23β-環(huán)氧-20-O-β-D-吡喃葡萄糖苷[3β,20(S)-dihydroxydammar-24-en-12β,23β-epoxy-20-O-β-D-glucopyranoside,48]和27-去甲基-(E,E)-20(22),23-二烯-3β,6α,12β-三羥基達瑪-25-酮[27-demethyl-(E,E)-20(22),23-dien-3β,6α,12β-trihydroxydammar-25-one,49][15];對沉默信息調節(jié)因子2基因1(silent information regulator two homologue 1,SIRT1)有激活作用的達瑪-20(22)E,24-二烯-3β,6α,12β-三醇[dammar-20(22)E,24-diene-3β,6α,12β-triol,50]、6α,20(S)-二羥基達瑪-3,12-二酮-24-烯[6α,20(S)-dihydroxydammar-3,12-dione-24-ene,51]和6α,20(S),25-三羥基達瑪-3,12-二酮-23-烯[6α,20(S),25-trihydroxydammar-3,12-dione-23-ene,52],以及無活性的6α,20(S),24(S)-三羥基達瑪-3,12-二酮-25-烯[6α,20(S),24(S)-trihyd-roxydammar-3,12-dione-25-ene,53][16]。Qiu等[17]聲稱采用2D LC/LTQ-Orbitrap-MS/NMR技術從人參莖葉中檢出646個人參皂苷,不過許多的結構需要進一步獲得純單體化合物后確認。

3 人參花蕾

人參花蕾化學成分的研究始于20世紀80年代末,分離鑒定出人參皂苷(ginsenoside)Ro、Rb1、Rb2、Rb3、Rc、Rd、Re、Rf、Rg1、Rg2[18-19]、I(54)、II(55)[20]、III(56)[21]、F1[22-23]、F3[22]、F5[22-23]、M7cd[24],20-葡萄糖基人參皂苷Rf[18],20(R)-人參皂苷Rh1[19,25],20(S)-人參皂苷Rh1[25],20(S)-人參皂苷Rg2,20(R)-人參皂苷Rg2,20(R)-原人參三醇[19],20(S)-原人參三醇[25],人參花皂苷(floralginsenoside)A(57)、B(58)、C(59)、D(60)、E(61)、F(62)[24]、G(63)、H(64)、I(65)、J(66)、K(67)[26]、Ka(68)、Kb(69)、Kc(70)[24]、La(71)、Lb(72)[24,26]、M、N[24,27]、O(73)、P(74)[27]、Ta、Tb(75)、Tc(76)、Td(77)[23],絞股藍皂苷XVII(gypenoside X)[19,22],珠子參皂苷(majoroside)F1(78)[24]、F6(79)[26],三七皂苷E(notoginsenoside E,80)[19,26],擬人參皂苷(pseudoginsenoside)RC1[22]、RS1(81)[26],越南人參皂苷(vina-ginsenoside)R4[24,26]、R9(82)、R15(83)[24],達瑪-20(21),24-二烯-3β,6α,12β-三醇,達瑪-20(22)E,24-二烯-3β,6α,12β-三醇[25]。

4 人參果實(漿果)

人參果實化學成分的研究始于20世紀80年代末,分離鑒定出人參皂苷(ginsenoside)Rb1[28-30]、Rb2、Rc[28-29]、Rd、Re、Rg1[28-30]、Rg2、Rg3[30]、Rh1[28]、Rh2[28,30]、Rh4、F1[31],20(R)-人參皂苷Rg2[32-33],20(R)-人參皂苷Rg3,20(R)-人參皂苷Rf2[20(R)-ginsenoside Rf2=25-hydroxy-20(R)-ginsenoside-Rg2][33],20(R)-人參皂苷Rh2[34],人參皂苷化合物K(ginsenoside compound K;20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol,84)[29],異人參皂苷Rh3(isoginsenoside Rh3,85)[28-29],20(S)-原人參二醇[30-31],20(S)-原人參三醇,20(R)-原人參三醇[31,33],20(R)-達瑪烷-3β,12β,20,25-四醇[20(R)-dammarane-3β,12β,20,25-tetrol,86],20(R)-達瑪烷-3β,6α,12β,20,25-五醇[20(R)-dammarane-3β,6α,12β,20,25-pentol][30]。

5 人參種子

與人參其他部位的三萜類化合物研究相比,人參種子的研究相對滯后。2009年報道從人參種子分離鑒定出達瑪烷型的三萜類化合物20(S)-原人參三醇,3-酮基-20(S)-原人參三醇[3-keto-20(S)-protopanaxatriol,87],人參皂苷Rd、Re、Rg2[35];奧克梯隆(ocotillone)型的三萜類化合物人參三萜二酮[panaxadione;(6α,24R)-20,24-epoxy-6,25-dihydroxy-dammarane-3,12-dione,88][35];以及羽扇豆烷(lupane)型三萜類化合物3β-反式阿魏酰氧基-16β-羥基羽扇豆-20(29)-烯[3β-trans-feruloyloxy-16β-hydroxylup-20(29)-ene,89][35-36],3β-順式阿魏酰氧基-16β-羥基羽扇豆-20(29)-烯[3β-cis-feruloyloxy-16β-hydroxylup-20(29)-ene,90][36]。

化合物1~90的化學結構見圖2。

R1R2R3R42.glc(2→1)-glcH-glc(6→1)-glcR-OH54.-glc(2→1)-glcHglcS-OOHorR-OOH55.-glc(2→1)-glcHglcR-OOHorS-OOH56.-glc(2→1)-glcHglc=O57.H-O-glcglc-OOH59.HOH-glc(6→1)-ara(p)-OOH64.-glc(2→1)-glc(6)AcHglc-OOH66.H-O-glc(2→1)-rhaglc-OOH68.HOHglc-OOH71.H-O-glc(2→1)-rhaglcS-OH72.H-O-glc(2→1)-rhaglcR-OH76.-glc(2→1)-glcH-glc(6→1)-ara(p)R-OOHorS-OOH77.-glc(2→1)-glcH-glc(6→1)-ara(p)S-OOHorR-OOH78.-glc(2→1)-glcHglcR-OH82.-glc(2→1)-glcHglcS-OH

R1R2R3R43.-glc(2→1)-glcH-glc(6→1)-glcOH4.-glc(2→1)-glcH-glc(6→1)-glcOOH58.H-O-glcglcOOH60.HOH-glc(6→1)-ara(f)OOH61.-glc(2→1)-glcHHOOH62.glcHglcOOH63.-glc(2→1)-glc(6)AcHglcOOH65.H-O-glc(2→1)-rhaglcOOH67.-glc(2→1)-glcOHglcOOH73.-glc(2→1)-glcH-glc(6→1)-ara(f)OOH79.H-O-glc(2→1)-L-rhaglcOH80.-glc(2→1)-glcHglcOOH83.H-O-glcglcOH

R1R2R36.OH-glc(4→1)-α-D-glcH7.OH-glc(2→1)-glcH8.OH-glc(2→1)-xylH30.=O-glc(2→1)-rhaH32.OglcHH42.OHHH45.OglcHH46.-OOCHHglc74.-O-glc(2→1)-glcH-glc(6→1)-ara(p)81.OH-glc(6)Ac(2→1)-rhaglc

R1R2R311.H-O-glc(2→1)-glcH12.H-O-glc(2→1)-xylH13.H-O-glcglc14.H-O-glc(2→1)-glcH15.H-O-glcH16.H-O-glc(2→1)-rhaH29.glcOHH50.HOHH85.glcHH

R1R218.-glc(2→1)-glcH19.glcH36.H-O-glc37.H-O-glc(2→1)-rha38.HOH

R1R222.-glcUA(6'-butylester)(2→1)-glcglc23.-glcUA(6'-methylester)glc24.-glcUA(6'-butylester)glc25.-glcUA(6'-butylester)(2→1)-glcH26.-glcUA(6'-methylester)(2→1)-glcH

注:1.本文化合物取代基部分,glc:β-D-glucopyranosyl;rha:α-L-rhamnopyranosyl;ara(p):α-L-arabinopyranosyl;ara(f):α-L-arabinofuranosyl;xyl:β-D-xylopyranosyl;Ac:acetyl;glcUA:β-D-glucopyranosiduronic acid;2.達瑪烷型的C-20和C-22雙鍵有Z型和E型之分,其寫法本文規(guī)范化為20(22)Z-或20(22)E-。3.已在前文[1-2]出現(xiàn)過的化合物結構,本文省略。圖2 化合物1~90的化學結構

6 結語

人參是馳名古今中外的藥用植物,至少有3000多年的藥用歷史[37]。早年的研究多集中在它的功能描述和評價,但直到1963年從人參中分離鑒定出人參皂苷[38-39],人參的研究才步入分子水平。1975年以后,人參的研究報道呈指數增加。現(xiàn)在,人參的功效和藥理作用得到國際公認[40],表明一定有藥效物質基礎存在。已有研究結果表明,人參皂苷的藥理作用和生物學活性,幾乎反映了人參的全部功能。本文綜合前文結果[1-2],迄今已從人參根和根莖、莖葉、花蕾、漿果、種子和紅參中共分離鑒定了201個單體化合物,具有翔實的譜學數據支持結構鑒定,其中189個歸屬為達瑪烷型三萜及其衍生物,10個歸屬為齊墩果酸型三萜,2個歸屬為羽扇豆烷型三萜。皂苷的糖基部分主要為β-D-吡喃葡萄糖基(β-D-glucopyranosyl group),其次為α-L-吡喃鼠李糖基(α-L-rhamnopyranosyl group),少數結合α-L-吡喃/呋喃阿拉伯糖基(α-L-arabinopyranosyl/α-L-arabinofuranosyl group)和β-D-吡喃木糖基(β-D-xylopyranosyl group),而β-D-吡喃葡萄糖醛酸基(β-D-glucopyranosiduronyl group)僅呈現(xiàn)在以齊墩果酸為苷元的皂苷中。在達瑪烷型三萜皂苷中,-β-D-吡喃葡萄糖基(2→1)-β-D-吡喃葡萄糖基寡糖鏈發(fā)生率較高,多結合在苷元的C-3位,成氧糖苷;-β-D-吡喃葡萄糖基(2→1)-α-L-吡喃鼠李糖基寡糖鏈多結合在苷元的C-6位,成氧糖苷;無論是原人參二醇和/或三醇型苷元,四環(huán)母核比較穩(wěn)定,取代基發(fā)生在C-3、C-6和C-12,C-17側鏈常常發(fā)生氧化、還原、環(huán)合、差向異構化等,衍生出多樣性的化學結構。生曬參(sun-dried ginseng)、水參(fresh ginseng)中的三萜結構類型相對比較簡單,但水參加工為紅參,熱動力學過程使C-17側鏈發(fā)生氧化、還原、環(huán)合、差向異構化、脫糖基化等,加熱溫度和時間不同,轉化程度不同[1]。如果C-20和C-22呈雙鍵鍵合,以E型為優(yōu)勢構型。人參地上部分富含氧化態(tài)的達瑪烷型三萜及其皂苷,這與地上部分暴露在空氣中有關。因此,人參地上部分比根和根莖含有更豐富的、化學結構更多樣性的達瑪烷型三萜及其皂苷,是尋找新藥優(yōu)秀先導化合物的寶貴天然資源。由于人參為種子類繁育生物,花蕾、果實、種子開發(fā)利用潛力受資源限制。莖葉每年可以再生,且莖葉中20(S/R)-人參皂苷Rh1、Rh2、Rg2、Rg3等稀有人參皂苷含量更高,受紅參中稀有人參皂苷生物活性研究結果的啟迪,人參莖葉更有廣闊的開發(fā)利用前景。

隨著高效液相色譜與各種類型質譜聯(lián)用技術的飛躍發(fā)展,生曬參[3,41]、紅參[41]、人參葉[42]等中的化學成分數目不斷被刷新,每個部位就含有近百個或以上,在這些技術的導向下,人們將從人參分離鑒定出更多的單體化合物,應用各種譜學技術確定其精細結構,豐富人參化學結構的多樣性,并進而闡明人參的藥效物質基礎和開發(fā)利用價值。

[1] 楊鑫寶,楊秀偉,劉建勛.人參中皂苷類化學成分的研究[J].中國現(xiàn)代中藥,2013,13(5):349-358.

[2] 李珂珂,楊秀偉.人參莖葉化學成分的研究進展[J].中國現(xiàn)代中藥,2012,14(1):47-50.

[3] Yang W Z,Ye M,Qiao X,et al.A strategy for efficient discovery of new natural compounds by integrating orthogonal column chromatography and liquid chromatography/mass spectrometry analysis:Its application inPanaxginseng,PanaxquinquefoliumandPanaxnotoginsengto characterize437potential new ginsenosides[J].Anal Chim Acta,2012,739:56-66.

[4] Lee D G,Lee J M,Yang S H,Identification of dammarane-type triterpenoid saponins from the root ofPanaxginseng[J].Nat Prod Sci,2015,21(2):111-121.

[5] 周琪樂,徐嵬,楊秀偉.中國紅參化學成分研究[J].中國中藥雜志,2016,41(2).DOI:10.4268cjcmm2016024.

[6] Zhou Q L,Yang X W.Four new ginsenosides from red ginseng with inhibitory activity on melanogenesis in melanoma cells[J].Bioorg Med Chem Lett,2015,25(16):3112-3116.

[7] Lee S M,Seo H K,Oh J S,et al.Updating chemical profiling of red ginseng via the elucidation of two geometric isomers of ginsenosides Rg9and Rg10[J].Food Chem,2013,141(4):3920-3924.

[8] Cho J G,Lee D Y,Shrestha S,et al.Three new ginsenosides from the heat-processed roots ofPanaxginseng[J].Chem Nat Compd,2013,49(5):882-887.

[9] Li K K,Yao C M,Yang X W.Four new dammarane-type triterpene saponins from the stems and leaves ofPanaxginsengand their cytotoxicity on HL-60cells[J].Planta Med,2012,78(2):189-192.

[10] Li K K,Yang X W.Minor triterpene compounds from the stems and leaves ofPanaxginseng[J].Fitoterapia,2012,83(6):1030-1035.

[11] 李珂珂,楊秀偉.人參莖葉中1個新三萜類天然產物[J].中草藥,2015,46(2):169-173.

[12] 楊秀偉,李珂珂,周琪樂.20(S)-人參皂苷Rf2,人參莖葉中1個新皂苷[J].中草藥,2015,46(21):3137-3145.

[13] Huang J,Tang X H,Ikejima T,et al.A new triterpenoid fromPanaxginsengexhibits cytotoxicity through p53and the caspase signaling pathway in the HepG2cell line[J].Arch Pharm Res,2008,31(3):323-329.

[14] Ma H Y,Gao H Y,Huang J,et al.Three new triterpenoids fromPanaxginsengexhibit cytotoxicity against human A549and Hep-3B cell lines[J].J Nat Med,2012,66(3):576-582.

[15] Tran T L,Kim Y R,Yang J L,et al.Dammarane triterpenes from the leaves ofPanaxginsengenhance cellular immunity[J].Bioorg Med Chem,2014,22(1):499-504.

[16] Yang J L,Ha T K,Dhodary B,et al.Dammarane triterpenes as potential SIRT1activators from the leaves ofPanaxginseng[J].J Nat Prod,2014,77(7):1615-1623.

[17] Qiu S,Yang W Z,Shi X J,et al.A green protocol for efficient discovery of novel natural compounds:Characterization of new ginsenosides from the stems and leaves ofPanaxginsengas a case study[J].Anal Chim Acta,2015.893:65-76.

[18] Shao C J,Xu J D,Kasai R,et al.Saponins from flower-buds ofPanaxginsengcultivated at Jilin,China[J].Chem Pharm Bull,1989,37(7):1934-1935.

[19] 邱峰,馬忠澤,裴玉萍,等.人參花蕾化學成分的研究[J].中國藥物化學雜志,1998,8(3):205-207.

[20] Qiu F,Ma Z Z,Xu S X,et al.A pair of24-hydroperoxyl epimeric dammarane saponins from flower-buds ofPanaxGinseng[J].J Asian Nat Prod Res,2001,3(3):235-240.

[21] Qiu F,Ma Z Z,Xu S X,et al.Studies on dammarane-type saponins in the flower-buds ofPanaxginsengC.A.Meyer[J].J Asian Nat Prod Res,1998,1(2):119-123.

[22] Yoshikawa M,Sugimoto S,Nakamura S,et al.Medicinal flowers.XI.Structures of new dammarane-type triterpene diglycosides with hydroperoxide group from flower buds ofPanaxginseng[J].Chem Pharm Bull,2007,55(4):571-576.

[23] Tung N H,Song G Y,Kim J A,et al.Dammarane-type saponins from the flower buds ofPanaxginsengand their effects on human leukemia cells[J].Bioorg Med Chem Lett,2010,20(1):309-314.

[24] Tung N H,Song G Y,Nhiem N X,et al.Dammarane-type saponins from the flower buds ofPanaxginsengand their intracellular radical scavenging capacity[J].J Agric Food Chem,2010,58(2):868-874.

[25] 徐斐,李珂珂,陳麗榮,等.人參花醇提物中的皂苷類化學成分[J].中國現(xiàn)代中藥,2016,18(1):56-62.

[26] Nakamura S,Sugimoto S,Matsuda H,et al.Structures of dammarane-type triterpene triglycosides from the flower buds ofPanaxginseng[J].Heterocycles,2007,71(3):577-588.

[27] Yoshikawa M,Sugimoto S,Nakamura S,et al.Medicinal flowers.XVI.New dammarane-type triterpene tetraglycosides and gastroprotective principles from flower buds ofPanaxginseng[J].Chem Pharm Bull,2007,55(7):1034-1038.

[28] Wang J Y,Li X G,Zheng Y N,et al.Isoginsenoside-Rh3,a new triterpenoid saponin from the fruits ofPanaxginsengC.A.Mey.[J].J Asian Nat Prod Res,2004,6(4):289-293.

[29] 王繼彥,李向高,楊秀偉.人參果中一個新的天然化合物的分離[J].中草藥,2006,37(12):1761-1764.

[30] Wang W,Zhao Y Q,Rayburn E R,et al.Invitroanti-cancer activity and structure-activity relationships of natural products isolated from fruits ofPanaxginseng[J].Cancer Chemother Pharmacol,2007,59(5):589-601.

[31] 徐敏,占扎君,章小永.人參果的化學成分研究[J].中草藥,2007,38(5):667-669.

[32] Bai X G,Xu J D,Jiang X K,et al.Study on dammarane-type saponins of ginseng fruit-isolation and identification of two configurational isomers[J].Sci Bull,1987,32(8):536-539.

[33] 于明,趙余慶.人參果中三萜類成分的化學研究[J].中草藥,2004,35(11):1221-1223.

[34] 趙余慶,袁昌魯,呂浩然.人參果中抗癌活性成分20(R)-人參皂甙-Rh2的分離與鑒定[J].中國中藥雜志,1991,16(11):678-679,704.

[35] Sugimoto S,Nakamura S,Matsuda H,et al.Chemical constituents from seeds ofPanaxginseng:structure of new dammarane-type triterpene ketone,Panaxadione,and HPLC comparisons of seeds and flesh[J].Chem Pharm Bull,2009,57(3):283-287.

[36] Kim J A,Son J H,Yang S Y,et al.A new lupane-type triterpene from the seeds ofPanaxginsengwith its inhibition of NF-κB[J].Arch Pharm Res,2012,35(4):647-651.

[37] Zheng B C.Shennong’s herbal-One of the world’s earliest pharmacopoeia[J].J Tradit Chin Med,1985,5:236.

[38] Shibata S,F(xiàn)ujita M,Itokawa H,et al.Studies on the constituents of Japanese and Chinese crude drugs.XI.Panaxadiol,a sapogenin of ginseng roots.(1).Chem Pharm Bull,1963,11(6):759-761.

[39] Shibata S,Tanaka O,Soma K,et al.Studies on saponins and sapogenins of ginseng.The structure of panaxatriol[J].Tetrahedron Lett,1965,42:207-213.

[40] Gillis C N.Panaxginsengpharmacology:A nitric oxide link?[J].Biochem Pharmacol,1997,54(1):1-8.

[41] Wu W,Sun L,Zhang Z,et al.Profiling and multivariate statistical analysis ofPanaxginsengbased on ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry[J].J Pharm Biomed Anal,2015,107:141-150.

[42] Mao Q,Bai M,Xu J D,et al.Discrimination of leaves ofPanaxginsengandP.quinquefoliusby ultra high performance liquid chromatography quadrupole/time-of-flight mass spectrometry based metabolomics approach[J].J Pharm Biomed Anal,2014,97:129-140.

TriterpenoidsinPanaxginseng

YANG Xiuwei*

(StateKeyLaboratoryofNaturalandBiomimeticDrugs,DepartmentofNaturalMedicines,SchoolofPharmaceuticalSciences,PekingUniversity,Beijing100191,China)

Ginseng is members of the genusPanaxin the Araliaceae family,which is well-known as the king of herbs,and has been an important medicinal resource all over the world.Many studies have been conducted to elucidate magical healing activities of ginsengs.Since most studies have been focused on the roots and rhizomes of ginseng as traditional medicinal parts,scientists are less attracted by ginseng stems-leaves.The prices of the roots and rhizomes of ginseng are expensive because it takes4-6years for growing from the seed,whereas ginseng stems-leaves which the prices are low and can be harvested every year.Therefore,if the ingredients from the stems-leaves have a similar or new biological activity as those from the roots and rhizomes,their utility values will be improved.Ginsenosides,the active components of the roots and rhizomes of ginseng,are shown to be involved in modulating multiple physiological activities.As a continuation of our summary on ginseng,this article will review the triterpenoids isolated from the roots and rhizomes,stems-leaves,fruits and seeds of ginseng as well as red ginseng to provide the scientific basis for research and development of modern Chinese medicine derived from ginseng.Until now,201triterpenoid compounds have been isolated and identified from ginseng.Among them,189compounds are classified into dammarane-type and their derivatives,10ones are classified into oleanolic acid-type and2ones are classified into lupane-type,which dammarane-type triterpenoids and their derivatives are predominantly dominant type not only in amount but also in structural varieties.

PanaxginsengC.A.Meyer;stems-leaves;flower buds;fruits;seeds;red ginseng;ginsenosides;triterpenoids

10.13313/j.issn.1673-4890.2016.1.003

2015-10-07)

“十二五”國家科技支撐專項(2011BAI03B01,2011BAI07B08)

*

楊秀偉,教授,博士生導師,研究方向:天然產物化學與藥物代謝;E-mail:xwyang@bjmu.edu.cn

主站蜘蛛池模板: 亚洲av成人无码网站在线观看| 国产小视频免费| 欧美色视频日本| 美女毛片在线| 成人噜噜噜视频在线观看| 欧美一级专区免费大片| 一区二区影院| 四虎影视库国产精品一区| 国产精品30p| 成年午夜精品久久精品| 中文精品久久久久国产网址 | 国产精品9| 亚洲精品国产日韩无码AV永久免费网| 欧美日韩一区二区三区四区在线观看| AV不卡在线永久免费观看| 国产成人精品日本亚洲77美色| 亚洲中文字幕手机在线第一页| 国产成人永久免费视频| 国产理论最新国产精品视频| 久久99国产乱子伦精品免| 欧美天堂久久| 国产好痛疼轻点好爽的视频| 色综合久久88色综合天天提莫| 国产在线观看第二页| 国产精品无码一区二区桃花视频| 噜噜噜综合亚洲| 国产毛片久久国产| 亚洲日韩精品综合在线一区二区 | 国产亚洲视频中文字幕视频| 99精品免费在线| 麻豆国产在线不卡一区二区| 蜜桃视频一区二区| 国内精品久久久久久久久久影视| 精品国产成人av免费| 免费看美女自慰的网站| 噜噜噜久久| 久操线在视频在线观看| 免费一级毛片完整版在线看| 天堂成人av| 激情综合图区| 成人福利一区二区视频在线| 亚洲天堂视频在线播放| 国产靠逼视频| 久久女人网| 伊人色在线视频| 日韩精品毛片| 尤物精品国产福利网站| 国产午夜无码片在线观看网站| 中文字幕 91| 国产永久在线观看| 免费国产福利| 免费在线看黄网址| 亚洲男人的天堂在线| 18禁高潮出水呻吟娇喘蜜芽| 国产成人高精品免费视频| 天堂网亚洲综合在线| 91伊人国产| 亚洲系列无码专区偷窥无码| 成年片色大黄全免费网站久久| 91精品国产无线乱码在线| 亚洲一级色| 蜜桃臀无码内射一区二区三区| 国产精品香蕉| 久久精品视频亚洲| 亚欧美国产综合| 久久免费成人| 欧美曰批视频免费播放免费| 亚洲国产AV无码综合原创| 国产区免费| 亚洲国产黄色| 久久精品国产999大香线焦| 91精品国产自产在线观看| 亚洲av中文无码乱人伦在线r| 免费观看无遮挡www的小视频| 亚洲精品成人片在线观看| 日韩小视频在线观看| 亚洲精品大秀视频| 热思思久久免费视频| 伊大人香蕉久久网欧美| 波多野结衣一区二区三区四区| 色综合天天视频在线观看| 国产成人精品午夜视频'|