何志龍,夏文建,周維,田亞男,柳維揚,林杉*
添加秸稈生物質炭對酸化茶園土壤N2O和CO2排放的短期影響研究
何志龍1,夏文建2,周維1,田亞男1,柳維揚3,林杉1*
1. 華中農業大學資源與環境學院//農業部長江中下游耕地保育重點實驗室,湖北 武漢 430070;2. 江西省農業科學院土壤肥料與資源環境研究所,江西 南昌 330200;3. 塔里木大學植物科學學院,新疆 阿拉爾 843300
為明確秸稈生物質炭對酸化茶園土壤改良及溫室氣體排放的影響,采用室內培養試驗方法,研究了小麥秸稈生物質炭添加(對照CK:0 g·kg-1;低生物質炭B1:8 g·kg-1;中生物質炭B2:24 g·kg-1;高生物質炭B3:48 g·kg-1)對茶園土壤pH值和溫室氣體排放的影響。結果表明,與對照組CK相比,添加生物質炭顯著抑制了酸性茶園土壤N2O的排放(P=0.000),但抑制效應并未隨生物質炭添加量的增加而加強,培養期間各處理N2O累積排放量分別為:CK 2.366 mg·kg-1,B1 0.444 mg·kg-1,B2 0.142 mg·kg-1,B3 0.207 mg·kg-1。低生物質炭(8 g·kg-1)和中生物質炭(24 g·kg-1)處理的綜合增溫潛勢(GWP)分別比對照組CK降低了33.45%和25.77%,而高生物質炭處理(48 g·kg-1)與對照處理差異不顯著。這表明施用中低量生物質炭更有利于茶園土壤的固碳減排。此外,生物質炭顯著提高了酸化茶園土壤pH值,生物質炭添加比例越大,pH值越高,故施用作物秸稈生物質炭有利于酸化土壤改良。相關性分析結果表明,土壤N2O排放與pH值之間呈顯著負相關關系,土壤pH值的升高可能是引起N2O排放量降低的重要原因。
酸化茶園;小麥秸稈生物質炭;pH值;N2O排放
引用格式:何志龍, 夏文建, 周維, 田亞男, 柳維揚, 林杉. 添加秸稈生物質炭對酸化茶園土壤N2O和CO2排放的短期影響研究[J]. 生態環境學報, 2016, 25(7): 1230-1236.
HE Zhilong, XIA Wenjian, ZHOU Wei, TIAN Yanan, LIU Weiyang, LIN Shan. Effects of Wheat-straw Derived Biochar on Acidified Tea Garden Soil N2O and CO2Em ission in Short-term Laboratory Experiments [J]. Ecology and Environmental Sciences, 2016,25(7): 1230-1236.
生物質炭是指有機物料在缺氧或厭氧環境中經高溫熱解產生的一種富碳難溶性固態物質(IBI Biochar Standards,2012)。其作為一種土壤改良劑和固碳物質受到國內外科技工作者的廣泛關注(何緒生等,2011)。有很多研究表明,在土壤中施用生物質炭,可促進土壤有機碳的固定,增強土壤肥力,降低土壤的酸度,減緩農業面源污染,減少溫室氣體排放(Asai et al.,2009;Zw ieten et al.,2013;Liu et al.,2011)。但也有不少研究表明添加生物質炭后促進了土壤溫室氣體的排放(Bruun et al.,2011;Jujjuri et al.,2014)。不同研究者關于生物質炭對土壤N2O和CO2排放作用的研究結果差異較大。一方面,這是由于生物質炭的類型和施用量的不同造成的(Cayuela et al.,2014)10;另一方面,不同實驗所用的土壤性質存在差異,這也在一定程度上影響了生物質炭對溫室氣體排放的作用效果(Ling et al.,2013)。
茶園是我國南方紅壤丘陵區主要土地利用類型之一,而紅壤區茶園土壤普遍存在酸化現象(張永利等,2011;楊向德等,2015)。茶園土壤pH值較低,不僅影響了茶葉的產量和品質,還促進了土壤N2O的排放(韓文炎,2006)。小麥秸稈是農業生產中常見的生物質材料,把小麥秸稈制成生物質炭添加到土壤中后,不僅能緩解茶園土壤酸化的問題,還能促進資源的可持續利用并減少農田土壤溫室氣體的排放(劉玉學等,2013)。目前,關于生物質炭施用的研究多集中在其對農業土壤改良方面(Sui et al.,2016;Case et al.,2014;Garland et al.,2011;Suddick et al.,2013),但關于生物質炭對酸化茶園土壤改良及溫室氣體排放影響的研究較少。為此,本研究利用室內培養試驗,通過向茶園土壤中添加不同量的生物質炭,研究生物質炭對酸性茶園土壤pH值和溫室氣體排放的影響,試圖尋找適宜的生物質炭添加比例,以期為酸性土壤改良及溫室氣體減排提供理論依據。
1.1土壤和生物質炭
供試土壤取自湖北省咸寧市(29°02′~30°18′N,133°31′~144°58′E)賀勝橋鎮茶園,植茶年限10年左右。當地年平均氣溫16.8 ℃,年平均降水量1577.4 mm,氣候溫和,降水充沛,屬于中亞熱帶向北亞熱帶過渡的氣候區,呈較明顯的半濕性季風氣候特點。按照對角線多點混合采集茶園0~20 cm表層土壤,同時取環刀土用于測土壤容重。將土樣帶回實驗室,剔除可見有機物殘體和根系后,取部分鮮樣用于測定土壤銨態氮和硝態氮等指標,其余土壤風干后研磨過2 mm篩,用于室內培養試驗。供試土壤基本理化性質為:有機碳9.78 g·kg-1,總氮1.10 g·kg-1,容重1.31 g·cm-3,pH 4.50。
生物質炭由小麥秸稈在缺氧環境中600 ℃熱裂解制備而成,過2 mm篩。生物質炭基本理化性質:總氮11.801 g·kg-1,有機碳415.270 g·kg-1,銨態氮35.504 mg·kg-1,硝態氮37.011 mg·kg-1,pH 8.63。
1.2試驗設計
室內培養試驗于2015年3月份進行。試驗共設置4個處理:(1)不施生物質炭(CK);(2)低生物質炭(B1,8 g·kg-1);(3)中生物質炭(B2,24 g·kg-1);(4)高生物質炭(B3,48 g·kg-1),分別相當于田間施用量0、18、54、108 t·hm-2。試驗培養溫度設置為(25±1)℃,土壤水分含量為65%土壤孔隙含水量(WFPS)。
稱500 g風干過篩土樣,分別置于一組規格為1000 m L培養瓶中,并調節土壤含水量至40% WFPS后置于恒溫培養箱預培養7 d,以激活土壤微生物和消除干濕效應(Dick et al.,2001)。預培養結束后生物質炭按照設計比例與活化土壤充分混合,調節土壤含水量至65% WFPS。用中間帶有兩個小孔的硅橡膠塞塞住瓶口,其中一孔中插入套有三通閥軟管的玻璃管,作為氣體取樣口和交換口;另一孔中插入綁有氣球的玻璃管,用于平衡采氣樣時培養瓶中的壓強。檢查密封性后將培養瓶放入恒溫培養箱中培養22 d,每隔2 d用稱重法補充因蒸發損失的水分,以保持土壤含水量的恒定。每個處理設6個重復,3個用于溫室氣體濃度的測定,3個用于土壤NH4+-N、NO3--N和pH值的動態變化分析,并分別于第0、5、10、16天采集土樣,最大程度上保證稱樣后培養瓶中剩余土壤質量相當。
分別于培養的第0.5、1、2、3、4、5、6、8、 11、16、22天采集氣體樣品。采樣前,反復抽氣并通入大氣使瓶內氣體濃度與瓶外大氣濃度平衡,采集培養瓶上部空間氣體樣本,作為初始氣體濃度,記錄采樣時間,密閉靜置培養2 h后,反復推拉注射器3次以混勻培養瓶中氣體,然后立即抽氣至預真空的集氣瓶中,再次記錄采樣時間。
1.3氣體及土壤樣品分析
N2O和CO2濃度由氣相色譜儀(Agilent 7890A)測定;硝態氮、銨態氮采用1 mol·L-1KCl振蕩浸提1 h,過濾,德國Seal Analytical AA3流動分析儀測定;土壤pH采用1∶2.5土水比懸液,酸度計電位法測定;容重采用環刀法(鮑士旦,2000)測定。
1.4數據計算與統計
N2O和CO2排放通量按下式計算:

式中,F為N2O和CO2排放通量(μg·kg-1·h-1或mg·kg-1·h-1),正值為排放,負值為吸收;ρ為標準狀況下氣體的密度;V是培養瓶上部有效空間體積(L);m為土樣干質量(g);△c/△t為在一特定時間內的氣體濃度變化速率;T為絕對溫度;α為N2O換算為N(28/44)、CO2換算為C(12/44)的轉換因子。
N2O和CO2累積排放量按下式計算:

式中,M為土壤氣體累計排放量(μg·kg-1或mg·kg-1);F為氣體排放通量(μg·kg-1·h-1或mg·kg-1·h-1),i為采樣次數,t為采樣時間(d)。
全球增溫潛勢(global warm ing potential,GWP)是一個用來表征溫室氣體對全球溫室效應總影響的指標,該指標以給定時間尺度的CO2質量當量計(CO2-eq)。對于100 a時間尺度的氣候變化,CO2、 CH4和N2O氣體的GWP分別為1、21和310(IPCC, 2013)。100 a時間尺度的CO2、CH4和N2O綜合增溫潛勢按下式計算:

式中,GWP單位為mg·kg-1(以CO2-eq計);F2CO為CO2的排放量(mg·kg-1);F4CH為CH4的排放量(mg·kg-1);F ON2為N2O的排放量(mg·kg-1)。
所有試驗結果均以3次重復的平均值±標準誤來表示,試驗數據用Excel軟件進行處理后,使用SPSS 16.0軟件進行相關分析,采用Pearson方法分析生物質炭添加量與N2O、CO2排放通量,以及N2O排放通量與NH4+-N、土壤pH之間的相關性,顯著性水平P=0.05,并用Origin 8.0軟件進行圖形繪制。
2.1土壤礦質態氮含量和氮素礦化量變化
培養期間,添加小麥秸稈生物質炭后,土壤中NO3--N含量均逐漸提高(圖1)。培養末期添加生物質炭處理(B1、B2和B3處理)的NO3--N含量均顯著高于對照處理(CK),不同生物質炭處理之間NO3--N含量無顯著差異。對照處理土壤NO3--N含量于培養的第5天達到峰值,之后逐漸下降,并在試驗結束時達到最低值且低于初始含量。不同處理下土壤NH4+-N含量在培養期間均呈逐漸下降趨勢,且隨著生物質炭添加量的增加土壤中NH4+-N含量下降幅度逐漸增大(圖1)。試驗結束時對照組CK,處理組B1、B2和B3土壤中NH4+-N含量較初始值分別減少了10.278%,51.650%、81.048%和83.541%。
2.2土壤pH變化
所有處理組土壤pH值在培養過程中均表現出先升高后下降趨勢(圖2)。其中以B2和B3處理組土壤pH值變化較大,且在試驗結束時土壤pH值高于初始值;而CK和B1處理組土壤pH值波動較小,試驗結束時對照組CK和B1處理組土壤pH值基本與初始值持平。

圖1 土壤NH4+-N和NO3--N含量動態變化Fig. 1 Temporal dynam ics of soil NH4+-N and NO3--N contents

圖2 土壤pH動態變化Fig. 2 Temporal dynam ics of soil pH value

圖3 土壤N2O和CO2累積排放量動態變化Fig. 3 Temporal dynamics of soil N2O and CO2cumulative emission
2.3土壤N2O和CO2的排放
為研究添加生物質炭對茶園土壤N2O排放的影響,培養試驗中測定的N2O累積排放量如圖3所示。對照組CK和生物質炭處理組之間差異較大,對照組N2O累積排放量顯著高于添加生物質炭處理組。不同量生物質炭處理之間也存在差異,在一定范圍內,隨著生物質炭添加量的增加,N2O平均排放通量總體呈降低趨勢(圖4)。生物質炭添加比例(x)與N2O平均排放通量(y)之間滿足方程:y=0.516+6.104exp(-x/3.146)(r=-0.651,P=0.022,n=12)。然而,添加生物質炭顯著增加了土壤CO2累積排放量,并隨著生物質炭添加量的增加而增加,兩者呈較好的線性關系(圖4),生物質炭添加比例(x)與CO2平均排放通量(y)之間滿足線性方程:y=0.352x+0.0215(r=0.951,P=0.000,n=12)。試驗結束時B1、B2和B3處理組CO2累積排放量分別為對照組CK的1.56、2.02和2.78倍。
2.4N2O排放與土壤礦質氮的關系
土壤礦質態氮含量是影響土壤氧化亞氮排放的主要因素之一。相關性分析結果表明(圖5),茶園土壤氧化亞氮排放通量與銨態氮含量之間呈極顯著正相關關系(P=0.005),表明銨態氮含量越高,N2O排放的越多;而N2O排放通量與茶園土壤硝態氮之間不存在顯著相關性。

圖4 CO2和N2O排放通量與生物質炭添加量之間的關系Fig. 4 The relationship between N2O and CO2fluxes and the biochar application amount

圖5 N2O排放通量與NH4+-N之間的關系Fig. 5 The relationship between N2O fluxes and NH4+-N content

圖6 土壤pH與N2O排放通量之間的關系Fig. 6 The relationship between pH and N2O emission
2.5N2O排放與土壤pH的關系
土壤pH值對茶園土壤N2O排放有顯著性影響(P=0.046),隨著pH值的升高,N2O排放通量逐漸降低(圖6),表明提高茶園土壤pH值,可減少N2O排放。
2.6土壤綜合增溫潛勢估算
試驗期間,添加生物質炭后土壤N2O排放被抑制但土壤CO2的排放卻得到促進。為進一步明確添加生物質炭后的綜合溫室效應(GWP),對所有處理組的N2O和CO2在100 a尺度上的綜合增溫潛勢進行了估算。如表1所示,B1和B2處理的綜合溫室效應均顯著低于CK處理,B1和B2處理的GWP較對照組CK分別減少604.874和480.033 mg·kg-1,降幅分別為34.667%和27.512%。
添加生物質炭后,土壤pH值的變化主要是土壤中氮素的轉化過程和生物質炭中堿性物質釋放綜合作用的結果。開始階段,土壤中有機氮的礦化、有機陰離子的脫羧作用和生物質炭中堿性物質的釋放,造成生物質炭處理組土壤pH值顯著升高,之后由于硝化作用釋放H+(王磊等,2013;W rageet al.,2001)以及土壤本身的緩沖作用,pH值逐漸下降。試驗結束時,生物質炭處理組土壤pH值高于對照組,特別是在B2和B3處理組中生物質炭的添加顯著提高了土壤pH值,這與張祥等(2013)的研究結果一致,隨著生物質炭添加比例的增加,土壤pH升高效果愈明顯。試驗過程中,各處理組N2O排放速率均逐漸降低,最終趨于平緩(圖3),這與很多學者的研究結果一致(張祥等,2015;陳玉真等,2015)。
隨著培養試驗的進行,土壤中的碳源和氮源不斷被消耗,硝化和反硝化作用的底物濃度逐漸降低,試驗結束時N2O排放量降至很低的水平,CK、B1、B2和B3處理組N2O排放通量分別為2.374、0.337、0.245和0.068 μg·kg-1·h-1。添加生物質炭顯著降低了土壤N2O的累積排放量,B1、B2和B3處理組N2O的累積排放量分別比對照組減少81.234%、94.006%和91.252%,這與Wang et al.(2011)得出的生物質炭顯著降低水稻土N2O排放速率的研究結果相似。生物質炭在熱解過程中會產生灰化堿等堿性物質,加入到酸性茶園土壤中有利于pH的提高。土壤N2O排放通量與pH之間的相關性表明(圖6),提高pH值有助于減少N2O的排放量。雖然pH的升高可促進硝化作用,但同時也將增強反硝化菌氧化亞氮還原酶的活性(Yanai et al.,2007)。另外,在生物質炭的內部可能存在局部厭氧的微環境,比起N2O的產生有更多的N2O被還原為N2。加之生物質炭具有大量的孔隙結構和巨大的比表面積,NO3-被大量吸附在土壤中(Cheng et al.,2008),從而使得N2O排放量顯著降低。

表1 不同比例生物質炭處理對土壤N2O、CO2排放總量及100年尺度全球增溫潛勢(GWP-100)的影響Table 1 Cumulative emissions of N2O and CO2from the soil and global warming potential as affected by different biochar rate
本研究與大部分室內培養試驗和短期田間試驗得出的生物質炭減少了土壤N2O排放的結果一致(Liu et al.,2012;Taghizadehtoosi et al.,2011),生物質炭在緩解土壤酸化問題的同時降低了土壤N2O氣體的排放量。也有一些試驗得出添加生物質炭對N2O排放無影響或促進了N2O排放的結論(Scheer et al.,2011;Saarnio et al.,2013;Suddick et al.,2013),試驗結果不同主要是因為生物質炭的原材料、熱解溫度、C/N、pH和施加比例等不同造成的(Cayuela et al.,2013)10-11。
有研究表明,生物質炭添加到土壤中可有效提高土壤有機碳含量(柯躍進等,201497-98;Woolf et al.,2010)。但生物質炭會影響土壤有機碳組分和微生物活性(陳心想等,2014),進而對土壤中有機碳的分解產生影響。目前關于生物質炭對CO2排放的影響存在較大爭議。柯躍進等(2014)98的研究表明施用生物質炭能降低CO2的排放,陳玉真等(2015)的研究則得出添加低量生物質炭對土壤CO2排放無顯著影響,高量生物質炭顯著促進CO2排放。本試驗中生物質炭顯著促進了CO2的排放,施用生物質炭增加土壤CO2排放量一方面可能是由于生物質炭可以提高土壤pH值,從而引起土壤呼吸速率的改變(范分良等,2012);另一方面可能是由于較強的化學分解造成的(Bird et al.,1997)。一般認為低溫下(350~550 ℃)制備的生物質炭芳香性差,不穩定強,更容易分解(Laird et al.,2010)。本試驗所用生物質炭是在中溫(600 ℃)條件下制備而來,生物質炭含有較多的易分解有機碳及磷、鉀和鈣等速效養分,施加到土壤中會增強土壤中微生物的活性,進而促進土壤中碳的礦化(張祥等,2015;Cross et al.,2011),使土壤CO2累積排放量顯著增加。
為進一步明確本試驗中生物質炭的綜合減排效果,對各處理組N2O和CO2的全球增溫潛勢GWP進行了估算。數據表明,添加生物質炭后,B1(18 t·hm-2)和B2(54 t·hm-2)處理的綜合增溫潛勢較對照組CK均出現了顯著下降,降幅分別為34.667%和27.512%,高德才等(2015)的研究也得出,當生物質炭施用量為20 t·hm-2時可顯著減弱綜合溫室效應。可見,施用生物質炭是一種能實現碳封存和減緩氣候變暖的有效措施。
(1)添加作物秸稈生物質炭顯著提高了酸化茶園土壤pH值,且生物質炭施加比例越大土壤pH值升幅越大,表明作物秸稈生物質炭具有改良酸化茶園土壤質量的潛力。
(2)室內模擬試驗表明,茶園土壤pH值對N2O排放通量有顯著影響,二者之間呈顯著負相關關系,土壤pH值的升高可能是引起N2O排放量降低的重要原因。
(3)添加秸稈生物質炭短期內顯著降低了中亞熱帶丘陵區酸化茶園土壤N2O的排放,但會促進土壤CO2的排放,100年尺度的綜合增溫潛勢(GWP)數據表明,添加中低量(8 g·kg-1和24 g·kg-1)生物質炭能顯著降低土壤增溫潛勢,其中B1(8 g·kg-1)處理組降幅達34.667%,固碳減排效果較明顯。
ASAI H, SAMSON B K, STEPHAN H M, et al. 2009. Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield [J]. Field Crops Research, 111(1-2): 81-84.
BAKKEN L R, LINDA B, BINBIN L, et al. 2012. Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils [J]. Philosophical Transactions of the Royal Society of London, 367(1593): 1226-1234.
BIRD M I, GR?CKE D R. 1997. Determination of the abundance and carbon isotope composition of elemental carbon in sediments [J]. Geochimica Et Cosmochimica Acta, 61(16): 3413-3423.
BRUUN E W, MüLLER-ST?VER D, AMBUS P, et al. 2011. Application of biochar to soil and N2O emissions: potential effects of blending fast-pyrolysis biochar with anaerobically digested slurry [J]. European Journal of Soil Science, 62(4): 581-589.
CASE S D C, MCNAMARA N P, REAY D S, et al. 2014. Can biochar reduce soil greenhouse gas emissions from a Miscanthus bioenergy crop? [J]. Global Change Biology Bioenergy, 6(1): 76-89.
CAYUELA M L, ZWIETEN L V, SINGH B P, et al. 2014. Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-analysis [J]. Agriculture Ecosystems & Environment, 191: 5-16.
CHENG C H, LEHMANN J, ENGELHARD M H. 2008. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence [J]. Geochimica Et Cosmochimica Acta, 72(6):1598-1610.
CROSS A, SOHI S P. 2011. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status [J]. Soil Biology and Biochemistry, 43: 2127-2134.
DICK J, SKIBA U, WILSON J. 2001. The effect of rainfall on NO and N2O emissions from Ugandan agroforest soils [J]. Phyton, 41(3):73-80.
GARLAND G M, SUDDICK E, BURGER M, et al. 2011. Direct N2O emissions following transition from conventional till to no-till in a cover cropped Mediterranean vineyard (Vitis vinifera) [J]. Agriculture Ecosystems & Environment, 141(1-2): 234-239.
GUNDALE M J, DELUCA T H. 2006. Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal [J]. Forest Ecology & Management, 231(1):86-93.
IPCC. 2013. Climate Change 2013: The Physical Science Basis: Working groupⅠcontribution to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press.
LAIRD D A, FLEMING P, DAVIS D D, et al. 2010. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil [J]. Geoderma, 158 (3-4): 443-449.
LEHMANN J, CZIMCZIK C I, LAIRD D, et al. 2009. “Stability of Biochar in the Soil”, in Biochar for Environmental Mangement [M]. London:Earthscan: 183.
LING Z, CAO X, MA?EK O, et al. 2013. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures [J]. John Wiley & Sons Ltd, 256-257(1): 1-9.
LIU X Y, QU J J, LI L Q, et al. 2012. Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies?—A cross site field experiment from South China [J]. Ecological Engineering, 42(9): 168-173.
LIU Y, YANG M, WU Y, et al. 2011. Reducing CH4and CO2emissions from waterlogged paddy soil with biochar [J]. Journal of Soils & Sediments, 11(6): 930-939.
ROGOVSKA N, LAIRD D, CRUSE R, et al. 2011. Impact of Biochar on Manure Carbon Stabilization and Greenhouse Gas Emissions [J]. Soil Science Society of America Journal, 75(3): 871-879.
SAARNIO S, HEIMONEN K, KETTUNEN R. 2013. Biochar addition indirectly affects N2O emissions via soil moisture and plant N uptake[J]. Soil Biology & Biochemistry, 58(2): 99-106.
SCHEER C, GRACE P R, ROWLINGS D W, et al. 2011. Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales,Australia [J]. Plant & Soil, 345(1): 47-58.
IBI. 2012. Standardized product definition and product testing guidelines for biochar that is used in soil [S].
SUDDICK E C, SIX J. 2013. An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation [J]. Science of the Total Environment, 465(6):298-307.
SUDDICK E C, SIX J. 2013. An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation [J]. Science of the Total Environment, 465(6):298-307.
SUI Y, GAO J, LIU C, et al. 2016. Interactive effects of straw-derived biochar and N fertilization on soil C storage and rice productivity in rice paddies of Northeast China [J]. Science of The Total Environment,544: 203-210.
TAGHIZADEHTOOSI A, CLOUGH T J, CONDRON L M, et al. 2011. Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches [J]. Journal of Environmental Quality, 40(2): 468-76.
VERHOEVEN E, SIX J. 2014. Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: An assessment across two years [J]. Agriculture Ecosystems & Environment, 191(15): 27-38.
WANG J, ZHANG M, XIONG Z, et al. 2011. Effects of biochar addition on N2O and CO2emissions from two paddy soils [J]. Biology & Fertility of Soils, 47(8): 887-896.
WOOLF D, AMONETTE J E, STREETPERROTT F A, et al. 2010. Sustainable biochar to mitigate global climate change [J]. Nature Communications, 1(3): 118-124.
WRAGE N, VELTHOF G L, BEUSICHEM M L V, et al. 2001. Role of nitrifier denitrification in the production of nitrous oxide[J]. Soil Biology & Biochemistry, 33(1): 1723-1732.
YANAI Y, TOYOTA K, OKAZAKI M. 2007. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments [J]. Soil Science & Plant Nutrition,53(2): 181-188.
ZWIETEN L V, KIMBER S W L, MORRIS S G, et al. 2013. Pyrolysing poultry litter reduces N2O and CO2fluxes [J]. Science of the Total Environment, 465(6): 279-287.
鮑士旦. 2000. 土壤農化分析[M]. 北京: 中國農業出版社: 25-109.
陳心想, 耿增超, 王森, 等. 2014. 施用生物炭后塿土土壤微生物及酶活性變化特征[J]. 農業環境科學學報, 33(4): 751-758.
陳玉真, 王峰, 尤志明, 等. 2015. 添加生物黑炭對茶園土壤CO2、N2O排放的影響[J]. 農業環境科學學報, 34(5): 1009-1016.
范分良, 黃平容, 唐勇軍, 等. 2012. 微生物群落對土壤微生物呼吸速率及其溫度敏感性的影響[J]. 環境科學, 33(3): 932-937.
高德才, 張蕾, 劉強, 等. 2015. 生物黑炭對旱地土壤CO2、CH4、N2O排放及其環境效益的影響[J]. 生態學報, 35(11): 3615-3624.
韓文炎(譯). 2006. 茶園土壤N2O釋放量的動態變化及其與環境因子的關系[J]. 中國茶葉, (3): 46-47.
何緒生, 耿增超, 佘雕, 等. 2011. 生物炭生產與農用的意義及國內外動態[J]. 農業工程學報, 27(2): 1-7.
胡雲飛, 李榮林, 楊亦揚. 2015. 生物質炭對茶園土壤CO2和N2O排放量及微生物特性的影響[J]. 應用生態學報, 26(7): 1954-1960.
柯躍進, 胡學玉, 易卿, 等. 2014. 水稻秸稈生物炭對耕地土壤有機碳及其CO2釋放的影響[J]. 環境科學, 35(1): 93-99.
劉玉學, 王耀鋒, 呂豪豪, 等. 2013. 生物質炭化還田對稻田溫室氣體排放及土壤理化性質的影響[J]. 應用生態學報, 24(8): 2166-2172.
王磊, 汪玉, 楊興倫, 等. 2013. 有機物料對強酸性茶園土壤的酸度調控研究[J]. 土壤, 45(3): 430-436.
楊向德, 石元值, 伊曉云, 等. 2015. 茶園土壤酸化研究現狀和展望[J].茶葉學報, , 56(4): 189-197.
張祥, 王典, 姜存倉, 等. 2013. 生物質炭對我國南方紅壤和黃棕壤理化性質的影響[J]. 中國生態農業學報, 21(8): 979-984.
張永利, 孫力. 2011. 茶園土壤酸化及其改良措施[J]. 茶業通報, (4):158-161.
Effects of Wheat-straw Derived Biochar on Acidified Tea Garden Soil N2O and CO2Emission in Short-term Laboratory Experiments
HE Zhilong1, XIA Wenjian2, ZHOU Wei1, TIAN Yanan1, LIU Weiyang3, LIN Shan1*
1. College of Recourses and Environment, Huazhong Agricultural University//Key Laboratory of Arable Land Conservation in Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Wuhan 430070, China;2. Institute of Soil Fertilizer and Resource Environment, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China;3. College of Plant Science and Technology, Tarim University, Alar 843300, China
Laboratory experiments were conducted to examine the effect of straw biochar addition on acidified tea garden soil amelioration and greenhouse gas emissions, different amounts of wheat-straw derived biochar (Control: 0 g·kg-1; Low biochar: 8 g·kg-1; Medium biochar: 24 g·kg-1; High biochar: 48 g·kg-1) were added to tea garden soil. The results indicated that the adding of biochar significantly reduced acidified tea garden soil N2O emissions compared with CK (no wheat-straw derived biochar).But the effect did not increase with increasing application rate of the straw biochar, with the 24 g·kg-1rate had the largest prominent effect. The cumulative N2O fluxes were 2.366, 0.444, 0.142 and 0.207 mg·kg-1for CK, B1,B2 and B3, respectively. Compared with CK treatment, the global warming potential of low biochar and medium biochar treatments decreased by 33.45% and 25.77%,respectively, while there was no significant difference between the high biochar treatment and control treatment. The result indicated that the low and medium biochar applied was more beneficial to carbon sequestration and reduce greenhouse gases emission in tea garden soil than the high biochar applied. Additionally, the biochar could significantly increase the pH value in acidified tea garden soil, indicating that the higher biochar addition with the higher soil pH value. Therefore, the straw biochar addition had better effect on acidic soil amelioration. The result showed that soil N2O flux was significantly correlated with soil pH, indicating that the increasing of soil pH may be an important factor to decrease N2O emission.
acidification of tea garden; wheat-straw derived biochar; pH values; N2O emissions
10.16258/j.cnki.1674-5906.2016.07.020
X144
A
1674-5906(2016)07-1230-07
國家自然科學基金項目(41201255;41171212;41561068);河南省科技攻關項目(162102110010)
何志龍(1991年生),男,碩士研究生,主要從事農田溫室氣體研究。E-mail:hzlfaogeiing@163.com
,林杉,E-mail: linshan@mail.hzau.edu.cn
2016-06-30