黃園,南海紅,張星星,湯恒星
鎘對(duì)斜生柵藻誘導(dǎo)型反牧食防御群體形成的抑制作用
黃園,南海紅,張星星,湯恒星
南京師范大學(xué)生命科學(xué)學(xué)院,江蘇 南京 210023
水域生態(tài)系統(tǒng)的鎘污染因?qū)ι锞哂袕?qiáng)毒性而引起人們廣泛關(guān)注。浮游藻類的反牧食防御在維持種群動(dòng)態(tài)和群落結(jié)構(gòu)方面具有重要作用,但目前關(guān)于鎘污染對(duì)藻類反牧食防御的影響并不清楚。采用在斜生柵藻(Scenedesmus obliquus)培養(yǎng)液中添加浮游動(dòng)物——大型溞(Daphnia magna)信息素的方法誘導(dǎo)藻類反牧食防御,同時(shí)將其暴露在不同鎘濃度環(huán)境下(0~0.32 mg·L-1),以探究藻類反牧食防御對(duì)鎘脅迫的響應(yīng)變化。結(jié)果發(fā)現(xiàn),添加大型溞信息素對(duì)斜生柵藻生長(zhǎng)速率、最大光化學(xué)效率(Fv/Fm)和實(shí)際光合效率(φPSII)均沒有顯著影響;無鎘環(huán)境中添加大型溞信息素后,柵藻種群分別在第2天和第3天形成大量的四細(xì)胞和八細(xì)胞群體,其群體比例分別達(dá)到42.7%和46.4%,最大每群體細(xì)胞數(shù)可達(dá)到(3.3±0.20);在0.10~0.32 mg·L-1鎘濃度范圍內(nèi),柵藻細(xì)胞生長(zhǎng)速率和光合作用均受抑制,其多細(xì)胞群體比例也顯著下降;當(dāng)鎘濃度較低時(shí)(≤0.08 mg·L-1),柵藻種群繁殖和光合效率均沒有明顯變化,但其多細(xì)胞群體比例顯著降低,誘導(dǎo)型反牧食防御被抑制。以上結(jié)果說明浮游藻類的誘導(dǎo)型反牧食防御對(duì)鎘污染具有較強(qiáng)的敏感性,低濃度鎘暴露可對(duì)其產(chǎn)生較強(qiáng)的抑制作用,這將導(dǎo)致鎘污染水域中的可誘導(dǎo)型藻類更易被小型浮游動(dòng)物捕食,進(jìn)而影響食物鏈的能量流動(dòng)。
鎘;斜生柵藻;反牧食防御;群體形成;大型溞
引用格式:黃園, 南海紅, 張星星, 湯恒星. 鎘對(duì)斜生柵藻誘導(dǎo)型反牧食防御群體形成的抑制作用[J]. 生態(tài)環(huán)境學(xué)報(bào), 2016,25(7): 1202-1210.
HUANG Yuan, NAN Haihong, ZHANG Xingxing, TANG Hengxing. Inhibitory Effect of Cadmium on the Inducible Anti-grazer Colony Formation in Scenedesmus obliquus [J]. Ecology and Environmental Sciences, 2016, 25(7): 1202-1210.
由重金屬污染導(dǎo)致的水生生物毒性及后期的生物富集與放大作用正受到越來越多的關(guān)注(Herpin et al.,1996)。鎘是在合金、釉料、顏料生產(chǎn)等工業(yè)中被大量使用的一種金屬,經(jīng)化工廠廢水排放等途徑進(jìn)入水體,被美國(guó)環(huán)境保護(hù)署列為最為嚴(yán)重的環(huán)境污染物之一(Awad et al.,2005)。除了對(duì)水生動(dòng)物的直接毒性作用,鎘可在水生植物(如柵藻)體內(nèi)積累,對(duì)其生長(zhǎng)、生理活性產(chǎn)生一定的影響。早期研究發(fā)現(xiàn)鎘濃度達(dá)到0.02 mg·L-1時(shí)可顯著降低柵藻的色素含量,進(jìn)而抑制藻類種群增長(zhǎng),并隨鎘濃度升高這種抑制作用更加明顯(Mohammed et al.,2006;Monteiro et al.,2011);Tukaj et al.(2007)研究發(fā)現(xiàn)鎘暴露可直接破壞藻類的葉綠素和液泡系統(tǒng)結(jié)構(gòu);鎘對(duì)藻類的細(xì)胞毒性也體現(xiàn)在其對(duì)光合、呼吸作用等生理代謝過程的抑制方面(Ilangovan et al.,1998;Le Faucheur et al.,2005;Ková?ik et al.,2011)。
除了作為生態(tài)系統(tǒng)的重要組成部分,藻類與浮游動(dòng)物的捕食關(guān)系亦廣泛存在于水域系統(tǒng)中,在維持物種多樣性和生態(tài)系統(tǒng)穩(wěn)定性方面具有重要作用(Drossel et al.,2001)。為抵御浮游動(dòng)物捕食,許多浮游植物可以通過形態(tài)改變(形成棘刺、厚細(xì)胞壁、集群等)進(jìn)行反牧食防御(Kampe et al.,2007;Van Donk et al.,2011),其中柵藻屬(Scenedesmus)微藻是具有反牧食防御特征藻類的典型代表。在浮游動(dòng)物攝食藻類時(shí),單細(xì)胞形態(tài)柵藻可“感受”到牧食者釋放的信息物質(zhì)以覺察到牧食者存在,進(jìn)而產(chǎn)生典型的四細(xì)胞或者八細(xì)胞生態(tài)型的誘導(dǎo)型防御群體(O'Donnell et al.,2013)。對(duì)于藻類而言,誘導(dǎo)型防御群體的形成可明顯增大集群細(xì)胞體積,降低被浮游動(dòng)物攝食的風(fēng)險(xiǎn),提高在強(qiáng)牧食壓力下的種群存活率;而對(duì)于浮游動(dòng)物,由于藻類形成誘導(dǎo)型防御群體后其體積增大,許多小型浮游動(dòng)物如輪蟲(Brachionus)和網(wǎng)紋溞(Ceriodaphnia)對(duì)藻類的攝食率降低,進(jìn)而影響浮游動(dòng)物的種群繁殖(Mayeli et al.,2005)。在水域生態(tài)系統(tǒng)不受外界嚴(yán)重干擾的情況下,微藻誘導(dǎo)型防御群體形成可有效防止食物鏈不同營(yíng)養(yǎng)級(jí)生物種群的劇烈波動(dòng),從而維持群落結(jié)構(gòu)的相對(duì)穩(wěn)定性(Vos et al.,2004;Stap et al.,2006)。
在重金屬污染的水體中,浮游藻類既面臨來自重金屬毒性的脅迫,又面臨被浮游動(dòng)物牧食的風(fēng)險(xiǎn),在這雙重壓力下具有防御特性的藻類將如何響應(yīng)呢?藻類的誘導(dǎo)型防御行為很可能因金屬毒性的影響而呈現(xiàn)出不同的形態(tài)變化,從而改變水體中浮游生物種間關(guān)系并進(jìn)一步影響生態(tài)系統(tǒng)穩(wěn)定性。基于此,本文分別選用鎘和柵藻作為研究對(duì)象,分析鎘脅迫下斜生柵藻(Scenedesmus obliquus)反牧食防御的變化。基于早期鎘對(duì)浮游藻類的毒性及柵藻表型防御的相關(guān)研究,推測(cè)鎘脅迫對(duì)柵藻生長(zhǎng)、光合作用具有抑制作用,從而破壞其反牧食防御。
1.1實(shí)驗(yàn)生物和培養(yǎng)體系
實(shí)驗(yàn)所用的斜生柵藻,編號(hào)為FACHB-416,由中國(guó)科學(xué)院水生生物研究所淡水藻種庫(kù)提供,采用BG11培養(yǎng)基(Rippka et al.,1979)于恒溫光照培養(yǎng)箱內(nèi)培養(yǎng),培養(yǎng)條件為溫度25 ℃,光照強(qiáng)度50 μmol·m-2·s-1,光暗周期比為14 h∶10 h,每天搖瓶3~4次,平均每3天添加1次新鮮培養(yǎng)基,使柵藻培養(yǎng)系處于指數(shù)生長(zhǎng)期。
通過添加浮游動(dòng)物濾液(內(nèi)含浮游動(dòng)物信息素)誘導(dǎo)柵藻反牧食防御行為是目前國(guó)際上的通行方法(Hessen et al.,1993;Zhu et al.,2016)。本實(shí)驗(yàn)選用的浮游動(dòng)物為實(shí)驗(yàn)室內(nèi)常年保存種——大型溞(Daphnia magna),以曝氣自來水培養(yǎng),每天投喂足量斜生柵藻,并及時(shí)清理代謝物以保證浮游動(dòng)物處于良好的生長(zhǎng)狀態(tài)。
1.2實(shí)驗(yàn)設(shè)計(jì)
1.2.1制備大型溞濾液
大型溞培養(yǎng)濾液中含有促使斜生柵藻產(chǎn)生誘導(dǎo)型防御的信息素,其主要成分為多種脂肪族硫酸鹽類和氨基磺酸鹽類物質(zhì)(Yasumoto et al.,2008)。首先將大型溞饑餓24 h,去除其排泄物質(zhì)可能帶來的外源營(yíng)養(yǎng)鹽,然后挑選狀態(tài)良好、大小適宜的大型溞,用不含N、P的BG11培養(yǎng)基培養(yǎng)24 h,初始密度300 inds·L-1,培養(yǎng)溫度25 ℃,光照強(qiáng)度50 μmol·m-2·s-1,光暗周期比為14 h∶10 h,并投喂密度為2×106cells·m L-1的斜生柵藻。之后采用0.1 μm孔徑的微孔濾膜進(jìn)行抽慮,即得到大型溞培養(yǎng)濾液。同時(shí)過濾含有斜生柵藻但未包含大型溞的BG11培養(yǎng)液作為對(duì)照濾液。調(diào)整兩濾液中N、P含量使其保持一致。
1.2.2預(yù)實(shí)驗(yàn)分析
BG11培養(yǎng)基中的EDTA(1 mg·L-1)可降低鎘的生物毒性(Campbell et al.,2000),因此先預(yù)實(shí)驗(yàn)研究EDTA的添加是否影響斜生柵藻誘導(dǎo)型防御行為。取對(duì)數(shù)生長(zhǎng)期斜生柵藻分別添加至70 mL含EDTA和不含EDTA的BG11培養(yǎng)基中,并分別添加30 m L對(duì)照濾液(對(duì)照組)和30 m L大型溞濾液(處理組),實(shí)驗(yàn)容器為150 mL錐形瓶,每組3個(gè)平行,共2(對(duì)照組與處理組)×2(EDTA添加與去除)×3(平行)=12個(gè)錐形瓶。斜生柵藻初始實(shí)驗(yàn)密度約1.0×105cells·m L-1,共培養(yǎng)9 d,每天搖瓶3~4次并隨機(jī)調(diào)換位置以保證光照均勻性,培養(yǎng)條件與上述相同。
1.2.3鎘實(shí)驗(yàn)
因污染程度差異自然水體中可溶性鎘含量波動(dòng)較大,如英國(guó)部分水域鎘質(zhì)量濃度約0.20×10-3mg·L-1,但在日本等國(guó)家的工業(yè)廢水管理中鎘的允許排放量可高達(dá)0.10 mg·L-1。Ward et al.(2005)研究發(fā)現(xiàn)鎘濃度達(dá)到0.18 mg·L-1時(shí)大型溞(D. magna)種群生長(zhǎng)不受影響,可正常牧食浮游藻類。基于此,本實(shí)驗(yàn)共設(shè)置5個(gè)鎘濃度:0、0.05、0.08、0.10以及0.32 mg·L-1。以蒸餾水溶解分析純CdCl2制備鎘母液(鎘濃度為25.0 mg·L-1)。取對(duì)數(shù)生長(zhǎng)期斜生柵藻添加至70 mL不含EDTA的BG11培養(yǎng)基中,并分別添加30 mL對(duì)照濾液(對(duì)照組)和30 mL大型溞濾液(處理組),通過添加不同體積鎘母液,達(dá)到實(shí)驗(yàn)設(shè)定濃度,鎘濃度利用原子吸收分光光度計(jì)-火焰法確定(Chen et al.,2001)。實(shí)驗(yàn)容器為150 m L錐形瓶,每組3個(gè)平行,共2(對(duì)照組與處理組)×5(Cd2+濃度)×3(平行)=30個(gè)錐形瓶。實(shí)驗(yàn)條件與預(yù)實(shí)驗(yàn)相同。
1.3細(xì)胞密度及形態(tài)觀察
實(shí)驗(yàn)開始后每天取樣(2 m L)1次,以魯戈氏液(2%)固定,顯微鏡下以血球計(jì)數(shù)板確定微藻細(xì)胞密度以及單細(xì)胞、二細(xì)胞、四細(xì)胞、八細(xì)胞及其他形態(tài)細(xì)胞個(gè)數(shù),某一群體形態(tài)細(xì)胞所占比例以該形態(tài)下的細(xì)胞總數(shù)在總細(xì)胞密度中的百分含量表示,每群體細(xì)胞數(shù)以總細(xì)胞密度除以各個(gè)形態(tài)的細(xì)胞顆粒總數(shù)獲得。根據(jù)公式μ=(ln Nt-ln N0)/t計(jì)算生長(zhǎng)率(μ),Nt表示t天時(shí)藻細(xì)胞密度,N0表示初始藻細(xì)胞密度。
1.4光合效率測(cè)定
采用葉綠素?zé)晒鈨x(Phyto-PAM)測(cè)定藻細(xì)胞光合效率。取2 mL藻液置于液相適配器中,暗適應(yīng)后測(cè)定細(xì)胞在飽和脈沖光下的最小熒光(F0)和最大熒光(Fm),并計(jì)算最大光化學(xué)效率Fv/Fm=(Fm-F0)/Fm;之后測(cè)定光適應(yīng)一段時(shí)間后的穩(wěn)定最小熒光Fs和穩(wěn)定最大熒光Fm′,計(jì)算實(shí)際光化學(xué)效率φPSII=(Fm′-Fs)/Fm′。
1.5統(tǒng)計(jì)分析
所有實(shí)驗(yàn)指標(biāo)均采用平均值±標(biāo)準(zhǔn)誤表述,利用SPSS 16.0、SigmaPlot 11.0軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析并作圖。藻類生長(zhǎng)率采用兩因素方差(two-way ANOVA)進(jìn)行分析。對(duì)每群體細(xì)胞數(shù)、光合參數(shù)指標(biāo)(Fv/Fm和φPSII)數(shù)據(jù),采用Mauchly進(jìn)行球形檢驗(yàn)后進(jìn)行重復(fù)測(cè)量方差分析(RM ANOVA),采用Bonferroni post hoc比較不同組間結(jié)果是否存在顯著差異,以P<0.05為差異顯著標(biāo)準(zhǔn)。
2.1EDTA去除對(duì)斜生柵藻生長(zhǎng)和誘導(dǎo)型防御群體形成的影響
2.1.1EDTA去除對(duì)斜生柵藻生長(zhǎng)的影響
對(duì)照組(含對(duì)照濾液)與處理組(含大型溞濾液)斜生柵藻在含EDTA的培養(yǎng)基中的生長(zhǎng)率分別為(0.369±0.023)、(0.366±0.009),在不含EDTA的培養(yǎng)基中的生長(zhǎng)率分別為(0.408±0.003)、(0.369±0.028)。兩因素方差分析表明EDTA(F=0.626,P=0.567)與大型溞濾液(F=0.836,P=0.397)均對(duì)斜生柵藻生長(zhǎng)率無顯著性影響。EDTA的主要作用為絡(luò)合銅、鋅等金屬離子,但因BG11培養(yǎng)基中金屬離子濃度含量較低,故去除EDTA后培養(yǎng)基中游離態(tài)金屬離子對(duì)藻細(xì)胞沒有明顯影響。另外,處理組中添加大型溞濾液也對(duì)斜生柵藻生長(zhǎng)無影響,表明浮游動(dòng)物“信息素”誘導(dǎo)柵藻防御群體形成與藻細(xì)胞生長(zhǎng)是彼此獨(dú)立的過程(Hessen et al.,1993;Lampert et al.,1994)。
2.1.2EDTA去除對(duì)斜生柵藻誘導(dǎo)型防御群體形成的影響
對(duì)照組中,無論是否去除EDTA,斜生柵藻種群均以單細(xì)胞為主,含EDTA與不含EDTA組其每群體細(xì)胞數(shù)量分別維持在1.0~1.34和1.0~1.33范圍內(nèi)(圖1);添加大型溞濾液后,實(shí)驗(yàn)第3天處理組中均觀察到大量八細(xì)胞群體,含EDTA和不含EDTA組其每群體細(xì)胞數(shù)分別升高至(3.46±0.09)和(3.47±0.32),之后隨培養(yǎng)時(shí)間延長(zhǎng)每群體細(xì)胞數(shù)呈下降趨勢(shì),推測(cè)可能是由于大型溞濾液中的“信息素”隨時(shí)間逐漸降解,從而導(dǎo)致誘導(dǎo)效應(yīng)降低(Wu et al.,2013)。重復(fù)測(cè)量方差分析(RM ANOVA)表明EDTA添加與否對(duì)處理組中斜生柵藻每群體細(xì)胞數(shù)量無顯著性影響(F=0.172,P=0.700)。

圖1 添加或去除EDTA培養(yǎng)基中對(duì)照組(A,含對(duì)照濾液)和處理組(B,含大型溞濾液)斜生柵藻的每群體細(xì)胞數(shù)變化Fig. 1 Variances in the mean number of cells per particle of S. obliquus cultured in medium with or without EDTA in the absence (A, control)or presence (B, treatment) of Daphnia filtrate
2.2鎘暴露對(duì)斜生柵藻生長(zhǎng)和誘導(dǎo)型防御影響
2.2.1鎘濃度變化
隨培養(yǎng)時(shí)間延長(zhǎng),培養(yǎng)基中鎘濃度呈下降趨勢(shì),實(shí)驗(yàn)9 d后培養(yǎng)基中平均鎘濃度由初始濃度0.05、0.08、0.10、0.32 mg·L-1分別降低為0.03、0.06、0.05,0.10 mg·L-1。微藻對(duì)重金屬離子常具有較強(qiáng)的富集能力(Pérez-Rama et al.,2002;Pe?a-Castro et al.,2004a),其細(xì)胞壁上的功能基團(tuán)(如多肽、多糖的氨基、羧基等)可與金屬離子發(fā)生吸附反應(yīng),金屬離子被動(dòng)吸附在細(xì)胞表面,之后與質(zhì)膜上的某些酶(如膜轉(zhuǎn)移酶、水解酶等)結(jié)合從而被細(xì)胞主動(dòng)轉(zhuǎn)移至胞內(nèi)(Gardea-Torresdey et al.,1990)。實(shí)驗(yàn)發(fā)現(xiàn)處理組和對(duì)照組中鎘實(shí)測(cè)濃度無顯著性差異(P>0.05),表明添加大型溞濾液并未影響柵藻細(xì)胞對(duì)鎘的富集過程。
2.2.2鎘暴露對(duì)斜生柵藻生長(zhǎng)的影響
隨鎘濃度升高,對(duì)照組和處理組中斜生柵藻生長(zhǎng)率均呈下降趨勢(shì)(圖2)。兩因素方差分析表明大型溞濾液對(duì)柵藻生長(zhǎng)率無顯著性影響(F=0.838,P=0.371),這與預(yù)實(shí)驗(yàn)結(jié)果相一致;但鎘濃度顯著影響微藻生長(zhǎng)率(F=11.467,P<0.001)。對(duì)照組中0.08 mg·L-1鎘暴露下柵藻生長(zhǎng)率顯著下降17.3%,且鎘濃度越高,生長(zhǎng)抑制作用越明顯(圖2A);處理組中0.10~0.32 mg·L-1鎘暴露下微藻生長(zhǎng)率顯著降低13.1%~17.8%(圖2B)。鎘對(duì)柵藻屬微藻的生長(zhǎng)抑制作用已被廣泛研究,且抑制作用強(qiáng)弱受微藻種類、暴露時(shí)間、鎘濃度等因素的影響(Terry et al.,2002;Tukaj et al.,2007;Monteiro et al.,2011)。鎘對(duì)細(xì)胞生長(zhǎng)的抑制作用主要通過與細(xì)胞蛋白的功能基團(tuán)(如蛋白SH-groups)相互作用,進(jìn)而抑制有關(guān)酶活性或?qū)е旅甘Щ顚?shí)現(xiàn)的(Assche et al., 1990;Sharma et al.,2009)。

圖2 不同鎘濃度培養(yǎng)下對(duì)照組(A)和處理組(B)中斜生柵藻生長(zhǎng)率Fig. 2 The grow th rates of S. obliquus in the absence (A, control) or presence (B, treatment) of Daphnia filtrate at different concentrations of cadmium

圖3 不同鎘濃度暴露下培養(yǎng)3、5、7、9 d后對(duì)照組與處理組中斜生柵藻的實(shí)際光合效率(φPSII)Fig. 3 The efficiency of photosystem II (φPSII) of S. obliquus populations grown for 3, 5, 7, and 9 days in the absence (control) or presence (treatment) of Daphnia filtrate at different concentrations of cadmium
2.2.3鎘暴露對(duì)斜生柵藻光合效率的影響
除生長(zhǎng)率外,光合效率的變化也體現(xiàn)了金屬離子對(duì)藻類生長(zhǎng)的影響(圖3和圖4)。添加大型溞濾液對(duì)藻細(xì)胞實(shí)際光合效率(φPSII)無顯著性影響(F=0.649,P=0.427)(圖3)。對(duì)照組和處理組中φPSII變化趨勢(shì)均具有明顯的鎘濃度效應(yīng),即隨鎘濃度升高而明顯下降。重復(fù)測(cè)量方差分析(RM ANOVA)表明對(duì)照組中鎘質(zhì)量濃度高于0.08 mg·L-1的處理顯著降低了藻細(xì)胞φPSII值(P<0.05),處理組中φPSII在鎘質(zhì)量濃度高于0.10 mg·L-1時(shí)顯著降低(P<0.05)。最大光化學(xué)效率(Fv/Fm)變化趨勢(shì)與φPSII相似,對(duì)照組與處理組柵藻的Fv/Fm均隨鎘質(zhì)量濃度升高而降低,實(shí)驗(yàn)第3天檢測(cè)到高鎘濃度(0.32 mg·L-1)下處理組Fv/Fm明顯低于對(duì)照組的Fv/Fm。φPSII和Fv/Fm的變化均反映出不論是對(duì)照組還是處理組,鎘均對(duì)柵藻光合作用產(chǎn)生了抑制作用。鎘對(duì)植物光合作用的抑制作用往往與其降低光合色素含量、損害光合器官如捕光色素蛋白復(fù)合體、瓦解葉綠體片層結(jié)構(gòu)、抑制CO2固定酶活性等過程密切相關(guān)(Ghoshroy et al.,1990;Larsson et al.,1998;Mobin et al.,2007)。
2.2.4鎘暴露對(duì)斜生柵藻誘導(dǎo)型防御群體形成的影響
實(shí)驗(yàn)鎘濃度范圍內(nèi),對(duì)照組中斜生柵藻在實(shí)驗(yàn)期間每群體細(xì)胞數(shù)穩(wěn)定在1~1.35范圍內(nèi)(圖5)。添加大型溞濾液顯著促進(jìn)了柵藻每群體細(xì)胞數(shù)的增加(F=112.529,P<0.001),培養(yǎng)3 d后無鎘環(huán)境中處理組柵藻每群體細(xì)胞數(shù)可達(dá)到(3.28±0.11)。鎘濃度對(duì)柵藻每群體細(xì)胞數(shù)具有顯著性影響(F=10.746,P<0.001),且具有明顯的濃度效應(yīng),當(dāng)鎘濃度升高至0.32 mg·L-1,處理組第3天每群體細(xì)胞數(shù)逐漸降低至(1.70±0.11),其下降趨勢(shì)符合雙曲線衰減模型變化規(guī)律。培養(yǎng)4、5、6 d后處理組中柵藻每群體細(xì)胞數(shù)隨鎘濃度的變化趨勢(shì)與第3天相似。

圖4 不同鎘濃度暴露下培養(yǎng)3、5、7、9 d后對(duì)照組與處理組中斜生柵藻的最大光化學(xué)效率(Fv/Fm)Fig. 4 The maximum quantum yield (Fv/Fm) of S. obliquus populations grow n for 3, 5, 7, and 9 days in the absence (control) or presence (treatment) of Daphnia filtrate at different concentrations of cadm ium
細(xì)胞群體比例的變化也反映了鎘對(duì)柵藻誘導(dǎo)型防御群體形成的抑制作用(圖6)。對(duì)照組中,在0~0.32 mg·L-1鎘濃度下(圖6A~E),柵藻群體均以單細(xì)胞形態(tài)為主。添加大型溞濾液后(圖6a~e),在無鎘暴露下(圖6a),柵藻種群中單細(xì)胞比例急劇下降,而四細(xì)胞群體和八細(xì)胞群體分別在第2天和第3天快速增多,其群體比例分別達(dá)到42.7%和46.4%;實(shí)驗(yàn)第4天至第6天,八細(xì)胞群體比例仍保持在25.3%~38.5%范圍內(nèi)。這與前人報(bào)道的柵藻可通過牧食者釋放的信息素“感知”到捕食風(fēng)險(xiǎn),從而形成多細(xì)胞群體來抵御牧食的結(jié)論相一致(Lampert et al.,1994;Lürling,2001;Lürling,2003)。這種反牧食防御群體可幫助柵藻減少小型浮游動(dòng)物牧食造成的攝食損耗,從而有利于其生物量的保持。
在鎘暴露環(huán)境下,即使是低鎘濃度(≤0.08 mg·L-1),柵藻四細(xì)胞與八細(xì)胞群體比例均顯著下降(圖6b~c),進(jìn)而導(dǎo)致每群體細(xì)胞數(shù)的降低;隨著鎘濃度升高,如0.32 mg·L-1鎘暴露下即使添加大型溞濾液(圖6e),柵藻種群仍以單細(xì)胞為主,其多細(xì)胞群體比例遠(yuǎn)遠(yuǎn)低于無鎘時(shí)多細(xì)胞群體比例。綜合以上結(jié)果表明,鎘暴露對(duì)柵藻誘導(dǎo)型反牧食防御群體形成具有較強(qiáng)的抑制作用。目前認(rèn)為柵藻防御型群體的形成是由于母細(xì)胞完成了正常的有絲分裂,但子細(xì)胞無法釋放出來從而粘連在一起,因此,微藻細(xì)胞正常生長(zhǎng)繁殖是誘導(dǎo)型防御群體形成的必要條件(Lampert et al.,1994)。但高濃度鎘(≥0.10 mg·L-1)暴露顯著抑制了柵藻生長(zhǎng)(圖2);另外,高鎘濃度下藻細(xì)胞光合效率也顯著下降(圖3和圖4),從而減少了用于群體形成的能量供應(yīng)(Pe?a-Castro et al.,2004b);以上因素均會(huì)導(dǎo)致高鎘濃度下柵藻誘導(dǎo)型防御群體形成受到抑制。
當(dāng)鎘濃度低于0.08 mg·L-1時(shí),柵藻生長(zhǎng)率和光合作用均未受顯著抑制,但其防御型四細(xì)胞、八細(xì)胞群體比例及每群體細(xì)胞數(shù)卻明顯降低(圖5和圖6)。研究表明藻細(xì)胞內(nèi)液泡系統(tǒng)對(duì)柵藻細(xì)胞粘連進(jìn)而形成群體有一定作用(Pickett-Heaps et al.,1975),但是Tukaj et al.(2007)發(fā)現(xiàn)鎘暴露會(huì)破壞柵藻的液泡系統(tǒng)結(jié)構(gòu)。另外,柵藻細(xì)胞對(duì)鎘離子的吸附作用也可能是抑制其群體形成的原因(T?pperw ien et al.,2007;Monteiro et al.,2009;Chen et al.,2012)。根據(jù)已有研究,微生物在受到銅、鎘等金屬離子毒性影響時(shí),其細(xì)胞表面多糖會(huì)與金屬離子相結(jié)合,作為一種保護(hù)細(xì)胞的機(jī)制(Scott et al.,1988;Crini,2005)。但是,細(xì)胞多糖也是促進(jìn)藻類群體形成的重要因素(Van Rijssel et al.,2000;Thornton,2002;Yang et al.,2007;Yang et al.,2008)。因此,用于促進(jìn)防御型群體形成的多糖可能用于抵抗金屬離子毒性,從而稍弱了其對(duì)群體形成的促進(jìn)作用。

圖5 培養(yǎng)3、4、5、6 d后對(duì)照組與處理組中斜生柵藻每群體細(xì)胞數(shù)隨鎘濃度的變化Fig. 5 Cells per particle of S. obliquus populations on day 3, 4, 5, and 6 in the absence (control) or presence (treatment) of Daphnia filtrate at different concentrations of cadmium
水域生態(tài)系統(tǒng)中,誘導(dǎo)型防御群體的形成可有效降低浮游藻類的捕食風(fēng)險(xiǎn),如柵藻的八細(xì)胞群體不易被小型枝角類牧食(Lürling et al.,1997)。本實(shí)驗(yàn)研究結(jié)果表明在鎘污染水體中,柵藻的誘導(dǎo)型反牧食防御群體形成將被抑制,微藻群體將趨向于單細(xì)胞組成,這與Whitton et al.(1980)發(fā)現(xiàn)的在重金屬污染水域中柵藻多以單細(xì)胞形態(tài)為主的結(jié)論相一致。金屬污染水域中,隨著藻類誘導(dǎo)型防御群體形成能力的減弱,藻細(xì)胞將更易被小型浮游動(dòng)物所牧食,從而增強(qiáng)食物鏈中小型浮游動(dòng)物介導(dǎo)的物質(zhì)和能量流動(dòng)。另外,對(duì)可誘導(dǎo)型藻類而言,反牧食防御群體形成后,柵藻群體的沉降速率加大,使得種群遠(yuǎn)離光合層而易下降至低光低溫的深水區(qū)(Lürling et al.,2001;Verschoor et al.,2009)。鎘污染抑制柵藻群體形成后,藻細(xì)胞平均比表面積將增大,更容易維持在表層水域進(jìn)行快速生長(zhǎng),進(jìn)而在一定程度上補(bǔ)償由鎘毒性和浮游動(dòng)物牧食導(dǎo)致的生物量損失。

圖6 不同鎘濃度暴露下對(duì)照組(A~E)和處理組(a~e)中斜生柵藻單細(xì)胞、二細(xì)胞、四細(xì)胞、八細(xì)胞以及其他不規(guī)則細(xì)胞數(shù)的群體比例Fig. 6 Proportions of S. obliquus cells that were unicellular or two-, four-, eight-celled colonies and others in the absence (control, A~E) or presence(treatment, a~e) of Daphnia filtrate at different concentrations of cadmium
鎘污染對(duì)斜生柵藻細(xì)胞生長(zhǎng)、光合效率、誘導(dǎo)型反牧食防御群體形成均會(huì)產(chǎn)生影響,低鎘濃度雖不會(huì)顯著降低柵藻細(xì)胞生長(zhǎng)和光合作用,但會(huì)明顯抑制其誘導(dǎo)型反牧食防御群體的形成;隨鎘濃度升高,藻類生長(zhǎng)被抑制,其反牧食形態(tài)防御將進(jìn)一步被削弱。以上結(jié)果說明鎘暴露對(duì)柵藻的誘導(dǎo)型反牧食形態(tài)防御具有較強(qiáng)的抑制作用,這將導(dǎo)致鎘污染水域中的柵藻更易被小型浮游動(dòng)物捕食,進(jìn)而影響食物鏈的物質(zhì)和能量流動(dòng)。
ASSCHE F V, CLIJSTERS H. 1990. Effects of metals on enzyme activity in plants [J]. Plant, Cell & Environment, 13(3): 195-206.
AWAD S, CHU T C, LUSTIGMAN B, et al. 2005. Effect of cadmium on the grow th of Chlamydomonas [J]. Journal of Young Investigators, 13:416-420.
CAMPBELL C D, HIRD M, lUMSDON D G, et al. 2000. The effect of EDTA and fulvic acid on Cd, Zn, and Cu toxicity to a bioluminescent construct (pUCD607) of Escherichia col. [J]. Chemosphere, 40(3):319-325.
CHEN C Y, CHANG H W, KAO P C, et al. 2012. Biosorption of cadmium by CO2-fixing m icroalga Scenedesmus obliquus CNW-N [J]. Bioresource Technology, 105: 74-80.
CHEN J R, TEO K C. 2001. Determ ination of cadm ium, copper, lead and zinc in water samples by flame atomic absorption spectrometry after cloud point extraction [J]. Analytica Chim ica Acta, 450(1-2): 215-222.
CRINI G. 2005. Recent developments in polysaccharide-based materials used as adsorbents in wastew ater treatment [J]. Progress in Plymer Science, 30(1): 38-70.
DROSSEL B, HIGGS P G, MCKANE A J. 2001. The influence of predatorprey population dynamics on the long-term evolution of food web structure [J]. Journal of Theoretical Biology, 208(1): 91-107.
GARDEA-TORRESDEY J L, BECKER-HAPAK M K, HOSEA J M, et al. 1990. Effect of chemical modification of algal carboxyl groups on m etal ion binding [J]. Environmental Science & Technology, 24(9):1372-1378.
GHOSHROY S, NADAKAVUKAREN M J. 1990. Influence of cadm ium on the ultrastructure of developing chloroplasts in soybean and corn [J]. Environmental and Experimental Botany, 30(2): 187-192.
HERPIN U, BERLEKAMP J, MARKERT B, et al. 1996. The distribution of heavy metals in a transect of the three states the Netherlands, Germany and Poland, determined with the aid of moss monitoring [J]. Science of the Total Environment, 187(3): 185-198.
HESSEN D O, VAN DONK E. 1993. Morpholigical changes in Scenedesmus induced by substances released from Daphnia [J]. A rchiv für Hydrobiologie, 127: 129-140.
ILANGOVAN K, CANIZARES-VILLANUEVA R, GONZALEZMORENO S, et al. 1998. Effect of cadm ium and zinc on respiration and photosynthesis in suspended and immobilized cultures of Chlorella vulgaris and Scenedesmus acutus [J]. Bulletin of Environmental Contamination and Toxicology, 60(6): 936-943.
KAMPE H, KONIG-RINKE M, PETZOLDT T, et al. 2007. Direct effects of Daphnia-grazing, not infochemicals, mediate a shift towards large inedible colonies of the gelatinous green alga Sphaerocystis schroeteri[J]. Limnologica-Ecology and Management of Inland Waters, 37(2):137-145.
KOVá?IK J, KLEJDUS B, ?TORK F, et al. 2011. Comparison of methyl jasmonate and cadmium effect on selected physiological parameters in Scenedesmus quadricauda (chlorophyta, chlorophyceae) [J]. Journal of Phycology, 47(5): 1044-1049.
LAMPERT W, ROTHHAUPT K O, VON ELERT E. 1994. Chem ical induction of colony formation in a green alga (Scenedesmus acutus) by grazers (Daphnia) [J]. Limnology and Oceanography, 39(7):1543-1550.
LARSSON E H, BORNMAN J F, ASP H. 1998. Influence of UV-B radiation and Cd2+on chlorophyll fluorescence, grow th and nutrient content in Brassica napus [J]. Journal of Experimental Botany, 49(323):1031-1039.
LE FAUCHEUR S, BEHRA R, SIGG L. 2005. Phytochelatin induction,cadm ium accumulation, and algal sensitivity to free cadm ium ion in Scenedesmus vacuolatus [J]. Environmental Toxicology and Chem istry,24(7): 1731-1737.
LüRLING M, VAN DONK E. 1997. Morphological changes in Scenedesmus induced by infochem icals released in situ from zooplankton grazers [J]. Limnology and Oceanography, 42(4):783-788.
LURLING M, VAN DONK E. 2000. Grazer-induced colony formation in Scenedesmus: are there costs to being colonial? [J]. Oikos, 88(1):111-118.
LüRLING M. 2001. Grazing-associated infochemicals induce colony formation in the green lga Scenedesmus [J]. Protist, 152(1): 7-16.
LURLING M. 2003. Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus w ith special reference to the induction of defensive morphology [J]. Annales de Limnologie-International Journal of Limnology, 39(2): 85-101.
MAYELI S M, NANDINI S, SARMA S S S. 2005. The efficacy of Scenedesmus morphology as a defense mechanism against grazing by selected species of rotifers and cladocerans [J]. Aquatic Ecology, 38(4):515-524.
MOBIN M, KHAN N A. 2007. Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress [J]. Journal of Plant Physiology, 164(5): 601-610.
MOHAMMED M, MARKERT B. 2006. Toxicity of heavy m etals on Scenedesmus quadricauda (Turp.) de Brébisson in batch cultures (7 pp)[J]. Environmental Science and Pollution Research, 13(2): 98-104.
MONTEIRO C M, CASTRO P M, MALCATA F X. 2009. Use of the m icroalga Scenedesmus obliquus to remove cadm ium cations from aqueous solutions [J]. World Journal of M icrobiology and Biotechnology, 25(9): 1573-1578.
MONTEIRO C M, FONSECA S C, CASTRO P M, et al. 2011. Toxicity of cadm ium and zinc on two m icroalgae, Scenedesmus obliquus and Desmodesmus pleiomorphus, from Northern Portugal [J]. Journal of Applied Phycology, 23(1): 97-103.
O'DONNELL D R, FEY S B, COTTINGHAM K L. 2013. Nutrient availability influences kairomone-induced defenses in Scenedesmus acutus (Chlorophyceae) [J]. Journal of Plankton Research, 35(1):191-200.
PE?A-CASTRO J M, MARTíNEZ-JERóNIMO F, ESPARZA-GARCíA F,et al. 2004a. Heavy metals removal by the m icroalga Scenedesmus incrassatulus in continuous cultures [J]. Bioresource Technology, 94(2):219-222.
PE?A-CASTRO J M, MARTíNEZ-JERóNIMO F, ESPARZA-GARCíA F,et al. 2004b. Phenotypic plasticity in Scenedesmus incrassatulus(Chlorophyceae) in response to heavy metals stress [J]. Chemosphere,57(11): 1629-1636.
PéREZ-RAMA M, ALONSO J A, LóPEZ C H, et al. 2002. Cadmium removal by living cells of the marine microalga Tetraselmis suecica [J]. Bioresource Technology, 84(3): 265-270.
PICKETT-HEAPS J D, STAEHELIN L A. 1975. The ultrastructure of Scenedesmus (Chlorophyceae) II. Cell division and colony formation[J]. Journal of Phycology, 11(2): 186-202.
RIPPKA R, DERUELLES J, WATERBURY J B, et al. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria [J]. Journal of General M icrobiology, 111(1): 1-61.
SCOTT J A, PALMER S J. 1988. Cadmium bio-sorption by bacterial exopolysaccharide [J]. Biotechnology Letters, 10(1): 21-24.
SHARMA S S, D IETZ K J. 2009. The relationship between metal toxicity and cellular redox imbalance [J]. Trends in Plant Science, 14(1): 43-50. STAP I, VOS M, MOOIJ W M. 2006. Linking herbivore-induced defencesto population dynamics [J]. Freshwater Biology, 51(3): 424-434.
TERRY P A, STONE W. 2002. Biosorption of cadmium and copper contaminated water by Scenedesmus abundans [J]. Chemosphere,47(3): 249-255.
THORNTON D. 2002. Diatom aggregation in the sea: mechanisms and ecological implications [J]. European Journal of Phycology, 37(2):149-161.
T?PPERW IEN S, XUE H, BEHRA R, et al. 2007. Cadm ium accumulation in Scenedesmus vacuolatus under freshwater conditions [J]. Environmental Science & Technology, 41(15): 5383-5388.
TUKAJ Z, BASCIK-REM ISIEWICZ A, SKOWRONSKI T, et al. 2007. Cadm ium effect on the grow th, photosynthesis, ultrastructure and phytochelatin content of green microalga Scenedesmus armatus: a study at low and elevated CO2concentration [J]. Environmental and Experimental Botany, 60(3): 291-299.
VAN DONK E, IANORA A, VOS M. 2011. Induced defences in marine and freshwater phytoplankton: a review [J]. Hydrobiologia, 668(1): 3-19.
VAN RIJSSEL M, JANSE I, NOORDKAMP D, et al. 2000. An inventory of factors that affect polysaccharide production by Phaeocystis globosa[J]. Journal of Sea Research, 43(3-4): 297-306.
VERSCHOOR A M, BEKMEZCI O K, ELLEN V, et al. 2009. The ghost of herbivory past: slow defence relaxation in the chlorophyte Scenedesmus obliquus [J]. Journal of Limnology, 68: 327-335.
VOS M, KOOI B W, DEANGELIS D L, et al. 2004. Inducible defences and the paradox of enrichment [J]. Oikos, 105(3): 471-480.
WARD T J, ROBINSON W E. 2005. Evolution of cadmium resistance in Daphnia magna [J]. Environmental Toxicology and Chemistry, 24(9):2341-2349.
WHITTON B A. 1980. Zinc in the environment [M]. New York: Wiley:363-400.
WU X Y, ZHANG J, QIN B L, et al. 2013. Grazer density-dependent response of induced colony formation of Scenedesmus obliquus to grazing-associated infochemicals [J]. Biochemical Systematics and Ecology, 50: 286-292.
YANG Z, KONG F X, SHI X L, et al. 2007. Effects of Daphnia-associated infochem icals on the morphology, polysaccharides content and PSII-efficiency in Scenedesmus obliquus [J]. International Review of Hydrobiology, 92(6): 618-625.
YANG Z, KONG F X, SHI X L, et al. 2008. Changes in the morphology and polysaccharide content of Microcystis aeruginosa (Cyanobacteria)during flagellate grazing [J]. Journal of Phycology, 44(3): 716-720.
YASUMOTO K, NISHIGAM I A, AOI H, et al. 2008. Isolation of new aliphatic sulfates and sulfamate as the Daphnia kairomones inducing morphological change of a phytoplankton Scenedesmus gutwinskii[J].Chem ical and Pharmaceutical Bulletin, 56(1): 133-136.
ZHU X X, WANG J, CHEN Q W, et al. 2016. Costs and trade-offs of grazer-induced defenses in Scenedesmus under deficient resource [J]. Scientific Reports, 6: 22594.
Inhibitory Effect of Cadm ium on the Inducible Anti-grazer Colony Formation in Scenedesmus obliquus
HUANG Yuan, NAN Haihong, ZHANG Xingxing, TANG Hengxing
School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
Cadmium contam ination in aquatic ecosystems has raised concerns due to its high cytotoxicity to organisms. The inducible anti-grazer defenses in phytoplankton are know n to stabilize the population dynam ics and the community structures in aquatic environment. However, how the inducible defenses of phytoplankton respond to Cd contamination remains unclear. In the present study, we inoculated the alga Scenedesmus obliquus into media with or without Daphnia filtrate, and cultured them at different concentrations of Cd2+(0~0.32 mg·L-1). The results showed that addition of Daphnia filtrate had no significant effect on the algal grow th rate, the maximum quantum yield (Fv/Fm) and the efficiency of photosystem II (φPSII). In the presence of Daphnia filtrate, Cd2+-free populations of S. obliquus were comprised of 42.7% four-celled colonies on day 2 and 46.4% eight-celled colonies on day 3, with the maximum number of cells per particle of (3.3±0.20). At Cd2+concentrations of 0.10~0.32 mg·L-1, the algal grow th and photosynthesis were decreased w ith the result of reduced proportions of colonial populations. Exposure to ≤0.08 mg·L-1Cd2+had no significant effect on algal grow th and photosynthesis; how ever, the ability of S. obliquus to form large colonies in response to Daphnia filtrate was impaired. These results suggested the high sensitivity of grazer-induced morphological defense of phytoplankton to Cd2+toxicity. Cd contam ination may result in inducible defended algae being easily grazed by small herbivorous zooplankton, potentially changing the energy flow along food chain in Cd-contam inated waters.
Cadm ium; Scenedesmus obliquus; anti-grazer defense; colony formation; Daphnia magna
10.16258/j.cnki.1674-5906.2016.07.016
X171.5
A
1674-5906(2016)07-1202-09
國(guó)家自然科學(xué)基金項(xiàng)目(31500373);江蘇省科技廳自然科學(xué)基金項(xiàng)目(BK20150972);江蘇省高校自然科學(xué)研究面上項(xiàng)目(15KJD180002)
黃園(1987年生),女,講師,博士,研究方向?yàn)樗蛏鷳B(tài)學(xué)。E-mail: huangyuan_2005@126.com
2016-06-03