王宇航 范文義 劉超逸
(東北林業(yè)大學(xué),哈爾濱,150040)
?
基于面向?qū)ο蟮腝UICKBIRD數(shù)據(jù)和SAR數(shù)據(jù)融合的地物分類1)
王宇航 范文義 劉超逸
(東北林業(yè)大學(xué),哈爾濱,150040)
為了實現(xiàn)精確植被類型信息提取,以福建省三明市將樂林場Quickbird影像和Radarsat-2全極化影像作為基礎(chǔ)數(shù)據(jù),探討高空間分辨率光學(xué)遙感影像與SAR(合成孔徑雷達)全極化影像融合進行地表覆蓋及森林類型識別的可行性。采用面向?qū)ο蠖喑叨确指罘椒▽uickbird全色與多光譜的融合影像進行處理,SAR影像采用Gram-Schmidt融合方法處理,運用處理的Quickbird與SAR的融合影像,分類提取植被的光譜、紋理和幾何特征信息,建立類層次結(jié)構(gòu),并對分類結(jié)果進行比較分析。結(jié)果表明:基于對象與知識的方法對高空間分辨率影像分類取得了較好的分類效果,多源遙感數(shù)據(jù)分類的總體精度為0.903。
多源遙感;面向?qū)ο螅怀叨确指睿缓铣煽讖嚼走_(SAR);數(shù)據(jù)融合
Based on the Quickbird data and Radarsat-2 full polarization data of San Ming City, Fujian Province, the object-oriented method was adopted to identify the land cover types from the fusion of Quickbird panchromatic and multi-spectral image, SAR images and the fusion of Quickbird image and SAR image which acquired by using the Gram-Schmidt method. Classification factors including spectral, texture and geometric features were used to establish a class hierarchy, and the classification results were compared. The knowledge-based and object-based methods was effective in the identification and classification of a high spatial resolution images, and vegetation types were effectively identified. The accuracy of multi-source remote sensing data was up to 0.903 with some improvements.
森林資源對于全球的碳循環(huán)、水循環(huán)、能量平衡以及人類的生態(tài)環(huán)境等十分重要。近年來,隨著遙感技術(shù)的快速發(fā)展,光學(xué)遙感技術(shù)和合成孔徑雷達(SAR)遙感技術(shù)已廣泛應(yīng)用于森林資源動態(tài)監(jiān)測、生物量估算等方面。光學(xué)遙感由于空間分辨率高、光譜信息豐富等特點,但受太陽輻射條件限制,圖像獲取具有一定的局限性,且影像上“同物異譜”、“同譜異物”和“椒鹽”現(xiàn)象普遍存在[1-4]。微波遙感具有對云霧的穿透能力,具有全天時、全天候、多極化、紋理信息豐富等特點,且SAR圖像反映了地表不同地物的后向散射強度信息,在一定程度上還可以獲取植被冠層以下的信息。……