李燕,劉錫平,李曉晨,張莎
(上海理工大學理學院,上海 200093)
具有逐項分數階導數的微分方程邊值問題解的存在性
李燕,劉錫平,李曉晨,張莎
(上海理工大學理學院,上海200093)
研究了一類具有逐項分數階導數的微分方程邊值問題.對參數的各種取值情況進行了全面的分析,運用Banach壓縮映射原理和Schauder不動點定理,得到并證明了邊值問題解的存在性定理.最后,給出了兩個例子來證明結論有效.
分數階微分方程;逐項分數階導數;邊值問題;Banach壓縮映射原理;Schauder不動點定理
近年來,由于分數階微分方程在現代科學各個領域中的廣泛應用,其理論研究備受關注[1].國內外學者已對分數階微分方程邊值問題進行了大量研究(見參考文獻[2-11]).具有逐項分數階導數的微分方程在振動理論中具有重要的意義,文獻[8-11]對于該類微分方程邊值問題進行了研究.
文獻[9]研究了分數階非線性微分方程邊值問題:

文獻[10]研究了如下具有逐項分數階導數的微分方程三點邊值問題:

受上述文獻的的啟發,本文研究如下具有逐項分數階導數的微分方程邊值問題:

定義2.1[1]函數y:(0,∞)→R的α>0階Riemann-Liouville分數階積分定義為:

等式右端在(0,∞)有定義.
定義2.2[1]連續函數y:(0,∞)→R的α>0階Caputo分數階導數定義為:

只要等式右端在(0,∞)上有定義.
引理2.1[1]如果y∈Cn(0,1)∩L[0,1],則

其中n∈N,n-1<α<n,n=[α]+1.






引理2.3(Banach壓縮映像原理)設E是Banach空間X中的非空閉子集,映射T是E到自身的映象,如果對任意的x,y∈E,

則存在唯一的x∈E使得Tx=x.
引理2.4(Schauder不動點定理)設E是Banach空間X中的非空閉凸子集,F是E到E的連續映射,使F(E)是X中的相對緊子集,則F在E中至少有一個不動點.
設C[0,1]為區間[0,1]上的連續函數空間,取范數為則C[0,1]為Banach空間.
我們首先估計Green函數 Gi(t,s)的上界.
引理3.1由(5),(6),(7)定義的函數 G1(t,s),G2(t,s),G3(t,s)有以下性質:
1)Gi(t,s)∈C([0,1]×[0,1]),i=1,2,3;
2)|Gi(t,s)|≤ki(s),i=1,2,3,
其中




顯然,邊值問題(1),(2)有解等價于映射 Si存在不動點.
定理3.1假定 f:(0,1)×R→R是連續函數,若存在(0,1)上可積函數 L(t),并且∫使得

則對于參數的p,q的任意取值,當pq≠0時,邊值問題(1),(2)都有唯一解.

定理3.2 假定 f:(0,1)×R→R,且存在正常數M,Ni使得

其中Ni滿足

這里ki(t)分別由(10),(11),(12)式定義,那么邊值問題(1),(2)式至少有一個解.

為了證明結論的有效性,給出下面的例子.
例4.1考慮邊值問題


例4.2考慮邊值問題

[1]Kilbas A A,Srivastava H M,Trujillo J J.Theory and Applications of Fractional Differential Equations[M].Amsterdam:Elsevier B.V,2006.
[2]白占兵.分數階微分方程邊值問題理論及應用[M].北京:陜科學技術出版社,2012.
[3]王曉,劉錫平,鄧雪靜.一類分數階奇異微分方程積分邊值問題正解的存在性[J].純粹數學與應用數學,2015,31(5):509-517.
[4]張立新,王海菊.含積分邊界條件的分數階微分方程邊值問題的正解的存在性[J].純粹數學與應用數學,2013,29(05):450-457.
[5]Liu Xiping,Jia Mei.Multiple solutions for fractional differential equations with nonlinear boundary conditions[J].Computers Mathematics with Applications,2010,59(8):2880-2886.
[6]劉帥,賈梅,秦小娜.帶積分邊值條件的分數階微分方程解的存在性和唯一性 [J].上海理工大學學報,2014,36(5):409-415.
[7]金京福,劉錫平,竇麗霞.分數階積分微分方程邊值問題正解的存在性[J].上海理工大學學報,2011,49(5):824-828.
[8]鄧雪靜,劉錫平,王曉.具分數微分算子的分數階微分方程邊值問題正解的存在性 [J].吉林大學學報,2015,53(05):857-862.
[9]Chai Guoqing.Existence results for boundary value problems of nonlinear fractional differential equations[J].Computers and Mathematics with Applications,2011,62(5):2374-2382.
[10]Bashir Ahmad,Juan J,Nieto.Sequential fractional differential equations with three-point boundary conditions[J].Computers and Mathematics with Applications,2012,64(10):3046-3052.
[11]Ahmed Alsaedi,Sotiris K Ntouyas,Ravi P Agarwal,etal.On caputo type sequential fractional dfferential equations with nonlocal integral boundary conditions[J].Advances in Difference Equations,2015,2015(1):1-12.
2010 MSC:34A08,34B08,34B15
Existence of solutions for boundary value problem of fractional differential equations involving sequential fractional derivative
Li Yan,Liu Xiping,Li Xiaochen,Zhang Sha
(College of Science,University of Shanghai for Science and Technology,Shanghai200093,China)
This paper investigates the existence of solutions for boundary value problem of fractional differential equations involving sequential fractional derivative.To analyze comprehensively the parameters and by using Banach contraction mapping principle and Schauder fixed point theorem,some new results on the existence of solution for the boundary value problem are obtained.Finally,we give two examples to illustrate our results.
fractional differential equation,sequential fractional derivative,boundary value problem,Banach contraction mapping principle,Schauder fixed point theorem
O175.8
A
1008-5513(2016)05-0470-11
10.3969/j.issn.1008-5513.2016.05.004
2016-05-12.
國家自然科學基金(11171220);滬江基金(B14005).
李燕(1991-),碩士生,研究方向:常微分方程理論與應用.
劉錫平(1962-),碩士,教授,研究方向:常微分方程理論與應用.