顏單秀
中圖分類號:G623.5 文獻標識碼:A 文章編號:1002-7661(2016)22-0070-02
在完善學習方式的課堂上,我們既喜又憂,喜的是看到了學生學習的主體性意識很強,至始至終學生都在參與,參與率很高,憂的是有些課堂上教師的主導性弱化了,不管學生講得好壞或對錯,老師不敢作評價,造成學習任務完不成,學習目標達不到,效率低下,反而阻礙了學生的發展。我們先來看一個案例:
【案例】北師大版數學四下《小數乘整數——買文具》教學片段
……
問題:買4塊橡皮需要多少錢?
列式:0.2=
師:怎么解決呢?同學先獨立解決,再在小組內討論自己的做法。
學生獨立完成,短暫小組交流后,全班匯報,學生按以下面的順序呈現自己的思路:
生1:0.2+0.2+0.2+0.2=0.8
生2:0.2元=2角,2=8(角),8角=0.8元
生3:畫圖
生4:2角錢=2角+2角+2角+2角=8角=0.8元
生5:◎◎=○○○○○○○○=0.8(◎=1,○=0.1)
學生交流完成后,老師并未做評價,馬上呈現了書上笑笑的算法,讓孩子們討論。
討論過程中,老師僅引導學生理解了圖與算式間的關系,當學生理解得似是而非的時侯,老師介入了討論,接下來的過程基本都是由老師“牽”著走,直奔笑笑的那段話而去,笑笑的那段話就是算理啊!當老師和學生一起說出笑笑的那段話后。接下來直接呈現書中的第三個問題,第三個問題的解決只是呈現了兩個孩子的數軸法和計數器法,就直接進入到練習環節,練習中孩子們做了15道一位小數乘整數的練習,孩子們基本都能寫出結果,可當老師問到:6.2表示的意義是什么,你是怎么理解的,當時連續點了5個同學都未能說出滿意的答案。
我們再來看看教師用書中對本內容提出的學習目標:1.結合實際問題,了解小數乘法的意義;借助面積模型,經歷探索簡單小數乘整數算法的過程。2.能正確進行簡單的小數乘整數的口算,并能解決有關的簡單實際問題。這樣說來,從學生最后答題的正確率表明,學生的知識技能掌握還是不錯的,但活動經驗和數學思想呢?一堂看似熱鬧而又順利的課堂,學生為何不能理解透小數乘整數的意義?問題究竟出在哪?
問題一:老師未真正理解教材的編排意圖,未讀透學生的生成,造成老師不作為。課堂單純呈現了算法多樣性,片面追求了課堂的熱鬧,老師未真正讀懂學生的生成,造成與后面的笑笑的方法割裂,使學生始終處于最近發展區,但未得到“跳一下”的指引,思維得不到突破;
問題二:老師未讀懂學生的困難,老師介入后未真正從學生的困難處入手。當老師呈現了笑笑的作法后,老師直接讓孩子們觀察,當孩子觀察有困難的時侯,老師就“牽”著學生觀察,然后總結出笑笑說出的那段話“0.2是2個0.1,4個0.2是8個0.1,是0.8”,這樣的教學程序基本是在呈現老師的理解,老師的思維代替了學生的思考,老師的觀察與總結代替了學生的學習,好似老師作了引導,實則,老師的越俎代庖阻礙了孩子“跳一下摘桃子”。學生的困難究竟在哪?老師應該做什么樣的引導呢?
《2011版小數學課程標準》中明確指出:“教師教學應該以學生的認知發展水平和已有的經驗為基礎,面向全體學生,注重啟發式和因材施教。教師要發揮主導作用,處理好講授與學生自主學習的關系,通過有效的措施,引導學生獨立思考、主動探索、合作交流,使學生理解和掌握基本的數學知識與技能、數學思想和方法,得到必要的數學思維訓練,獲得基本的數學活動經驗。”解讀標準,老師的主導作用對學生的主體性學習起著引領、指導、幫助作用,從某種意義上講,沒有老師良好的導就沒有學生良好的學,導是學的充分條件。老師如何在教學過程中充分發揮其主導作用呢?我談談我的個人想法。
一、發揮統領作用,課前預設要先行
好的課前預設才會有好的課中生成,解讀教材、研究學情是我們預設的范疇。
首先,我們要整體性解讀文本,本課時內容在整個教學框架中的位置及作用?它與前后知識點的聯系如何?在本類知識體系中還有沒有相似的內容,它們間有什么聯系?再解讀本課時內容的框架結構,教材所呈現的幾個問題情境有什么聯系?滲透了怎樣的思想方法?要達成什么樣的目標?我們再來研究教材所呈現的情境適不適合當前的學生的學情,整合教學資源,在此基礎上設計出從學生已有認知和經驗出發的教學內容。比如,開頭的案例中,計算“4塊橡皮需要多少錢”,學生基本能用乘法意義和“元、角、分”的現實模型轉化成整數來解決,滲透轉化思想,以學生已有的經驗為基礎的設計處于學生的最近發展區,為更高層次的學習奠定基礎。再呈現笑笑的方法,用面積模型從直觀上幫助學生進一步理解小數乘整數的意義,這個過程讓學生經歷了情境化的過程、也經歷了意義的抽象過程,同時滲透了轉化思想和數形結合思想,特別是面積模型的應用,既聯系了第一單元小數意義的內容和后面小數乘小數的意義,也為將來分數乘法的學習奠定了平移基礎。我們的教學設計一定是處于整體性結合框架下的“類狀”內容,具有長程視野,“點狀”式教學設計最易造成師生思維的狹促。
其次,把握學情是課堂順利進行的另一要素。課前要分析學生的知識基礎是扎實的還是初淺的;預測學生解決問題時,可能會有幾種做法,每種做法都與什么思想方法對應;預測學生可能會出現的困難點,學生的困難點往往就是知識的生長點,知道了學生的困難點老師才可能在課堂上很好地幫助學生度過難關,老師的導才能起到良好的方向作用。案例中,學生最根本的困難點應該落在第一單元“小數意義”的再認識上,第一單元揭示小數意義時,在抽象過程中也用到了面積模型,與本課最相通的內容是對小數單位的理解,所以我們要預測如果課堂中學生對面積模型理解不太透徹時,一定要讓學生回到第一單元小數單位的內容與方法進行再學習。越平靜的課堂,老師的功底越深厚,課堂的發展越沉穩,因為老師已對課堂上曾經和即將發生的事都已了如指掌,并盡在掌握之中。
二、發揮幫助作用,課中生成要利用
前面預設的框架越大,教師在課堂對生成信息的捕捉越靈敏,對學生的困難點把握越準確,幫助會更有的放矢。
首先,教師要善于捕捉可利用的生成資源,引導學生加以整合。案例中,在討論0.2的算法過程中,五個學生的共同特點都是應用了轉化的思想,把新的問題轉化成舊知來解決,生1與生3直接利用乘法的意義計算;生2、生4和生5都利用生活模型,把小數轉化成整數來計算。理清學生的算法的意圖,正是引導學生理解小數乘整數的意義的基礎,特別是生3和生5的思路,是最接近小數乘整數意義的方法,一個把面積模型變成線段,另一個學生的方法只是把面積模型變成了自創符號罷了。如果在這里老師讓學生觀察一下他們的做法,把幾種方法分分類,再找一找共同點和區別,問題就變得迎刃而解了。
其次,教師要找準學生的困難點,引導學生層層突破。案例中,學生對面積模型不能解釋,其根本原因在于他們未能與前面學的小數意義中的“小數單位”進行溝通、聯系。那我們就按以下四步走:第一步,先單獨理解0.2的意義,表示2個0.1,用面積圖怎么表示,讓所有學生在紙上畫一畫,當學生用一個矩形表示1,把它分成10份,每1份是0.1,表示0.2,就涂出兩份;再進行第二步,4個0.2怎么表示,學生定會再涂出3個0.2;第三步,讓學生觀察,思考:現在一共涂了多少?里面有幾個0.1?再讓學生溝通4個0.2就是8個0.1。接著讓學生用口頭語言和書面語言描述剛才涂的過程,特別是要鼓勵學生用數學語言來表達,寫出0.2=(2.1)=(2).1=8.1=0.8,就這樣,每個同學都經歷了意義產生的過程,算法的提煉也順理成章了。
接著教師要幫助學生總結知識,引導學生織網爬高。案例中,教材中編者意圖旨在利用這個情境溝通多樣性算法的共通性——總結小數乘整數的意義,無論算法如何,表達形式如何,實則意義相同,最終都回歸到算3個0.4就是算12個0.1是多少。再與前面幾個情境的結論聯系起來,從而得出小數乘整數的一般意義和算法,在總結的過程中提煉出本課時所用到的思想與方法,讓孩子產生對下一課時所要學的內容聯想。
三、發揮指導作用,學習方式要完善
是的,老師教的最高境界是不教,具體到行動上,學生能自己發現問題并能找到合適的解決辦法,簡單點講就是成熟的自學能力,這個過程就是因材施教、自育自學的過程。單一的學習方式容易造成學習依賴或讓學生失去方向,所以完善學生的學習方式對學生的發展同樣無足輕重。教師在平時教學過程中大膽指導學生自主、探究、合作性學習,并加以指導和培訓,指導的方法越得當、培訓力度越強、堅持時間越久,效果就會越突出。自主學習水平較高的學習群體的課堂,老師真的可以做到少講或不講,老師的主導作用只要體現在指導學生正確使用學習方式即可。
綜上所述,教師是學生學習的引導者、組織者和合作者,老師的主導意識越強,越能體現學生學習的主體性,推動學生思維的發展。教師在教學過程中的主導性體現,發言量不能為其衡量的唯一標準,而與學生的學情有關,只要學生的學習有需要,老師應該挺身而出,發揮其主導作用。導,導在方向,導在學習困難處,導出學生的自主與獨立。