李創第,高碩,葛新廣,鄒萬杰,李暾
(廣西科技大學土木建筑工程學院,廣西柳州545006)
五參數Maxwell阻尼器耗能結構在有界噪聲激勵下隨機響應解析解
李創第,高碩,葛新廣,鄒萬杰,李暾
(廣西科技大學土木建筑工程學院,廣西柳州545006)
對設置五參數Maxwell阻尼器的單自由度耗能結構在有界噪聲激勵下的隨機響應問題進行研究.首先,采用五參數Maxwell阻尼器的積分型模型,建立了耗能結構時域非擴階微分積分動力方程;然后,利用傳遞函數法,直接在耗能結構非擴階空間上獲得耗能結構在任意激勵下位移、速度和阻尼器受力的時域瞬態響應的解析解;最后,基于此精確解,獲得耗能結構在有界噪聲激勵下位移、速度和阻尼器受力的隨機響應方差解析解,并給出了算例,從而建立了此種耗能結構在有界噪聲激勵下隨機響應解析分析的一整套方法.
五參數Maxwell阻尼器;傳遞函數法;阻尼器受力響應;有界噪聲;解析解
粘彈性阻尼器耗能性能優良,已廣泛應用于各種結構的被動減振控制[1-4].Maxwell阻尼器本構方程簡單,模型計算參數便于從試驗數據中擬合[5-6],且一般流體阻尼器比較符合兩參數Maxwell模型,粘彈性阻尼器也可用兩參數Maxwell模型近似表示或用五參數Maxwell模型較好表示,故兩參數Maxwell模型[1-3,7-11]和五參數Maxwell模型[1-3,12]的應用研究受到日益重視.
目前分析五參數Maxwell阻尼器耗能結構動力響應的精確法只有擴階復模態法[7-10,12],文獻[7,9]用擴階復模態法分析了Maxwell阻尼器耗能結構在Knain-Tajimi譜隨機地震激勵下的位移平穩方差響應,由于尚未獲得平穩響應解析解,故研究側重于大量數值計算結構的歸納與總結;擴階復模態法因擴階方程組物理意義不明確,變量個數劇增,計算效率低,且尚未涉及對耗能結構安全有重大影響的阻尼器受力的響應分析,使該方法的實際應用受到限制.
有界噪聲隨機激勵模型[13-15],不僅可以模擬寬帶和白噪聲隨機激勵,而且可以模擬窄帶隨機激勵;不僅可以模擬地震激勵[16-17]、脈動風激勵[18-21],而且還可以模擬軌道和路面隨機起伏激勵[22],因而在國內外得到較廣泛的應用[23-25].
本文采用非擴階微分積分方程精確建模,運用傳遞函數法,獲得五參數Maxwell阻尼耗能單自由度結構在任意激勵下非擴階時域瞬態響應解析解和基于有界噪聲激勵隨機響應的解析解,具有工程應用價值.
設置五參數Maxwell阻尼器的單自由度耗能結構,在任意激勵F(t)作用下,結構計算模型見圖1,其運動方程為:

式(1)中:m,c,k分別為結構的質量、阻尼和剛度;x為結構位移;p(t)為五參數Maxwell阻尼器的作用力;特別地,對于地震激勵,F(t)=-mx¨g(t),其中,x¨g(t)為地震地面加速度.
根據五參數Maxwell阻尼器的本構關系[12],阻尼器的作用力p(t)可表示為:


圖1 結構計算模型Fig.1 Structure calculation model

2.1耗能結構特征值
設結構的初始位移x(t=0)和速度x.(t=0)均為零,對式(4)進行拉氏變換得:

由于特征值方程式(11)是關于s的一元四次代數方程,故可求得耗能結構4個特征值sj的解析解[27],其中一對共軛復特征值和2個負實特征值.
2.2傳遞函數解析式
因特征值sj為傳遞函數H(s)的極點,故可將H(s)展開為:

2.3耗能結構位移和速度時域瞬態響應解析解
由式(6)、式(8)、式(12)和式(15),得:

對上述兩式取拉式逆變換,得耗能結構位移和速度時域瞬態響應解析解:

式中:ηj根據式(13)求出.
2.4阻尼器的受力響應解析解
由式(6)、式(8)、式(10)和式(17),得:

對上式取拉氏逆變換,得:

由式(2)、式(3)和式(9)知,阻尼器的受力響應為:

將式(20)、式(23)代入上式,并根據式(8),得阻尼器受力的時域瞬態響應解析解:

3.1有界噪聲激勵的相關函數和譜密度
有界噪聲激勵F(t)的相關函數CF(τ)和譜密度SF(ω)分別為[16-21]:

式中:E[·]表示取數學期望;τ和ω分別為F(t)的時差和頻率變量;D,α,β分別為F(t)的方差、相關因子和卓越頻率因子.
特別地,對于地震動激勵x¨g(t),可取為[16-17,28]:

3.2耗能結構平穩隨機響應解析解
由式(20)、式(21)和式(25),得耗能結構響應的平穩解為:

則耗能結構的位移、速度和阻尼器受力響應協方差為:


式中:上標“*”表示取復共軛.
將式(40)代入式(37),得:

將式(41)代入式(34)~式(36),并令τ=0,得有界噪聲激勵下耗能結構位移、速度和阻尼器受力隨機響應方差解析解:

特別地,對于地震激勵,F(t)=-mx¨g(t);在表達式(41)中,令D=m2Dg和q=-αg+iβg,則式(42)~式(44)即可表示為耗能結構的隨機地震響應方差解析解.
對于如圖2所示的軟土場地條件下的單自由度結構,其質量為m,剛度為k,阻尼為c,安裝五參數Maxwell阻尼器對結構進行耗能減震.結構計算參數分別取為:結構質量m=1 kg,結構剛度k=200N/m,阻尼比ζ=0.05;五參數Maxwell阻尼器計算參數分別取為:平衡模量k0=50N/m,松弛時間倒數μ1=10 s-1,μ2=20 s-1,兩分支標準Maxwell阻尼器的阻尼系數分別按4種工況(I~IV)?。篶1=6,12,24,36 N·s/m,c2=3,6,12,18 N·s/m.有界噪聲地震動激勵x¨g(t)相關參數取值為:地震烈度I=8,ζg=0.96,ωg=10.9 rad/s.計算所得結構特征值sj和計算參數ηj見表1;結構位移、速度和阻尼器受力響應方差見表2.

圖2 結構計算模型Fig.2 Structure calculation model

表1 結構特征值和計算參數Tab.1 Structural characteristic values and calculation parameters
表1給出了結構特征值sj和計算參數ηj在4種工況下的計算結果,表2給出了耗能結構在各工況下的結構響應方差,表明本文計算方法的可實施性;由表2所示結果可知,與無阻尼器的普通結構響應對比,五參數Maxwell阻尼器耗能結構減震性能優良,且耗能結構在阻尼器松弛時間不變的情況下,同時增加兩分支標準Maxwell阻尼器的阻尼系數,結構的位移和速度均方響應均減小,而阻尼器的受力均方響應增大,表明增加同類型的阻尼器,可進一步增加結構耗能減震性能,減小結構地震響應,此計算結果與實際情況相符;此外,利用頻域法和數值積分法,所得數值解與本文傳遞函數法所獲結構響應方差完全一致(如圖3~圖5所示),從而驗證了本文方法的正確性.

表2 結構響應方差及對比Tab.2 Response variance of structures and comparison

圖3 結構位移響應方差Fig.3 Response variance of displacement

圖4 結構速度響應方差Fig.4 Response variance of velocity

圖5 阻尼器受力響應方差Fig.5 Response variance of damper's force
對五參數Maxwell阻尼耗能單自由度結構在有界噪聲激勵下的平穩隨機響應進行了研究,獲得了摘要所述結果.本文所用傳遞函數法,無需對結構動力方程擴階即可獲得結構在任意激勵下的響應解析解,物理意義明確;且由于有界噪聲激勵模型可以模擬多種工程隨機激勵,從而使本文所獲該激勵下的結構響應方差解析解具有較好的工程應用意義.
[1]SOONGTT,DARGUSH G F.Passive Engrgy Dissipation Systems in Structural Engineering[M].England:John Wiley and Ltd,1997.
[2]CHRISTOPOULOS C,FILIATRAULT A.Principle of Passive Supplemental Damping and Seismic Isolation[M].Pavia:IUSS Press,2006.
[3]周云.粘彈性阻尼減震結構設計[M].武漢:武漢理工大學出版社,2006.
[4]李創第,鄒萬杰,葛新廣,等.多自由度一般積分型粘彈性阻尼減震結構的隨機響應與等效阻尼[J].工程力學,2013,30(4):136-145.
[5]PARK SW.Analytical Modeling of Viscoelastic Dampers for Structural and Vibration Control[J].International Journal of Solids and Structures,2001,38(s44-45):8065-8092.
[6]CHANG T S,SINGH M P.Mechanical Model Parameters for Viscoelastic Dampers[J].Journal of Engineering Mechanics,2009,135(6):581-584.
[7]SINGH M P,VERMA N P,MORESCHI L M.Seismic Analysis and Design with Maxwell Dampers[J].Journal of Engineering Mechanics,2003,129(3):273-282.
[8]YAMADA K.Dynamic Characteristics of SDOF Structure with Maxwell Element[J].Journal of Engineering Mechanics,2014,134(5):396-404.
[9]PALMERI A,RICCIARDELLIF,DE LUCA A,etal.State Space Formulation for Linear Viscoelastic Dynamic Systems with Memory[J].Journal of Engineering Mechanics,2003,129(7):715-724.
[10]PALMERIA.Correlation Coefficients for Structures with Viscoelastic Dampers[J].Engineering Structures,2006,28(8):1197-1208.
[11]葛新廣,李創第,鄒萬杰.Maxwell阻尼減震結構的最大非平穩響應[J].廣西工學院學報,2012,23(4):1-7.
[12]ZHANG R H,SOONG T T.Seismic Design of Viscoelastic Dampers for Structural Application[J].Journal of Structural Engineering,1992,118(5):1375-1392.
[13]HUANG Z L,ZHUW Q,NIYQ,et al.Stochastic Averaging of Strongly Non-Linear Oscillators under Bounded Noise Excitation[J].Journal of Sound and Vibration,2002,254(2):245-267.
[14]ZHUW Q,HUANGZL,KO JM,et al.Optimal Feedback Control of Strongly Non-Linear Systems Excited by Bounded Noise[J].Journal of Sound and Vibration,2004,274(3):701-724.
[15]朱位.非線性隨機動力學與控制-Hamilton理論體系框架[M].北京:科學出版社,2003.
[16]李桂青.抗震結構計算理論和方法[M].北京:地震出版社,1985.
[17]胡聿賢.地震工程學[M].北京:地震出版社,2006.
[18]LIN Y K,LIQ C.Stochastic Stability of Wind Excited Structures[J].Journal of Wind Engineering and Industrial Aerodynamics,1995,54(94):75-82.
[19]LIN Y K.Stochastic Stability of Wind-Excited Long-S pan Bridges[J].Probabilistic Engineering Mechanics,1996,11(4):257-261.
[20]LIN Y K,LIQ C.New Stochastic Theory for Bridges Stability in Turbulent Flow II[J].Journal of Engineering Mechanics,1995,121(1):102-116.
[21]ZHU J,WANGQC,XIEW C,et al.Flow-Induced Instability under Bounded Noise Excitation in Cross-F low[J].Journal of Sound and Vibration,2008,312(3):476-495.
[22]DIMENTBERG M F.Stability and Subcritical Dynamics of Structures with Spatially Disordered Travelling Parametric Excitation[J].Probabilistic Engineering Mechanics,1992,7(3):131-134.
[23]劉雯彥,陳忠漢,朱位秋.有界噪聲激勵下單擺-諧振子系統的混沌運動[J].力學學報,2003,35(5):634-640.
[24]XIEW C.Moment Lyapunov Exponents of a Two-Dimensional System under Bounded Noise Parametric Excitation[J].Journal of Sound and Vibration,2003,263(3):593-616.
[25]ZHU J,XIEW C,SORM C,et al.Parametric Resonance of a T wo Degrees-of-Freedom System Induced by Bounded Noise[J].Journal of Applied Mechanics,2009,76(4):041007-1~13.
[26]QIAN D,HANSEN J S.A Time Domain Substructure Synthesis Method for Viscoelastic Structure s[J].Journal of Applied Mechanics,1995,62(2):407-413.
[27]歸行茂,李重華,柴常智.數學手冊[M].上海:上海科學普及出版社,1993.
[28]李桂青,曹宏,李秋勝,等.結構動力可靠性理論及其應用[M].北京:地震出版社,1993.
(學科編輯:黎婭)
Analytic solution of random response of energy dissipation structures with five-parameter Maxwell dampers under bounded noise excitation
LI Chuang-di,GAO Shuo,GE Xin-guang,ZOU Wan-jie,LI Tun
(School of Civil Engineering and Architecture,Guangxi University of Science and Technology, Liuzhou 545006,China)
The random response of a single degree of freedom energy dissipation structure with five-parameters Maxwell dampers under bounded noise excitation is studied.Firstly,the integral model of five-parameter Maxwell damper is adopted,the structural non-extended order differential-integral dynamic response equation is established.Then,the non-extended analytic solution of transient displacement,velocity and damper’s force response in time domain for energy dissipation structure are obtained by using transfer function method;Lastly,by using the above exact solutions,analytical solution of the response variance of the displacement,velocity and damper’s force of energy dissipation structure under the bounded noise excitation are obtained.Therefore,a complete set of analytic methods for the stochastic response of the energy dissipation structure under bounded noise excitation is established and a numerical example is given.
five-parameter Maxwell damper;transfer function method;force response of damper;bounded noise; analytic solution
TU311.3
A
2095-7335(2016)03-0001-07
10.16375/j.cnki.cn45-1395/t.2016.03.001
2016-03-17
國家自然科學基金項目(51468005,51368008);廣西自然科學基金項目(2014GXNSFAA118315);廣西科技大學創新團隊支持計劃項目(2015)資助.
李創第,博士,教授,研究方向:被動控制結構抗風抗震,E-mail:lichuangdi1964@163.com.