999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

鄰苯二甲酸酯降解細菌的多樣性、降解機理及環境應用

2016-12-12 03:52:20韓永和何睿文李超向萍羅軍崔昕毅
生態毒理學報 2016年2期
關鍵詞:污染環境研究

韓永和,何睿文,李超,向萍,羅軍,崔昕毅

南京大學環境學院 污染控制與資源化研究國家重點實驗室,南京210046

?

鄰苯二甲酸酯降解細菌的多樣性、降解機理及環境應用

韓永和,何睿文,李超,向萍,羅軍,崔昕毅*

南京大學環境學院 污染控制與資源化研究國家重點實驗室,南京210046

鄰苯二甲酸酯(phthalic acid esters, PAEs)是一類對人體內分泌系統有干擾作用的持續性有機污染物(persistent organic pollutants, POPs)。PAEs在環境介質如水體、底泥和土壤中長期賦存會對生物體產生毒害效應,其分布廣、濃度高和難降解等特點是限制有效環境治理的主要因素。作為環境的重要組成部分,微生物對污染物有很強的適應能力和高效的降解能力,這為PAEs的生物修復提供了可能。與物理化學修復法相比,微生物修復技術具有可控性強、修復面廣和靈活性高等優勢。本文綜述了已報道的大部分PAEs降解細菌的種類及其代謝機制,并分析了其在PAEs污染水體和土壤修復中的應用現狀與前景,以期為PAEs環境行為與生物修復研究提供參考。

內分泌干擾物;持久性有機污染物;鄰苯二甲酸酯;微生物;生物降解;健康風險

Received 7 November 2015 accepted 22 December 2015

鄰苯二甲酸酯(phthalic acid esters, PAEs)是一類以人工合成為主要來源的環境內分泌干擾物,因其在塑料制品、醫療用品、家電和玩具等材料中的廣泛使用,可在土壤、水體和大氣中積累并直接或間接地影響人類健康[1-2]。作為最常見的單體塑化劑,環境中PAEs主要包括鄰苯二甲酸二(2-乙基)己酯(di-(2-ethylhexyl) phthalate, DEHP)、鄰苯二甲酸一丁酯(monobutyl phthalate, MBP)、鄰苯二甲酸二丁酯(dibutyl phthalate, DBP)、鄰苯二甲酸丁芐酯(butyl benzyle phthalate, BBP)和鄰苯二甲酸二乙酯(diethyl phthlate, DEP)等。國際癌癥研究機構(IARC)統計表明,塑料成品中PAEs含量通常為10%~60%[3]。其中,小分子量PAEs(DBP、鄰苯二甲酸二甲酯(dimethyl phthlate, DMP)和DEP)主要添加至化妝品和個人護理產品中,起到香水保香和抑揮發及指甲油的抑脆裂作用,而大分子PAEs如BBP和DEHP是工業塑化制品如聚氯乙烯(polyvinylchloride, PVC)的主要原材料[1, 3]。在我國,90%以上PAEs被用于PVC的生產[2]。PAEs在合成材料中往往以非化學共價鍵的形式存在,可通過風化作用等向環境釋放[1]。目前PAEs在市政固體廢棄物,室內降塵,底泥和廢水及垃圾滲濾液中被頻繁檢出;同時,PAEs在土壤微生物、植物和動物體內的富集及生物鏈傳遞引發的人體健康風險也備受關注[1]。

我國塑料制品使用泛濫,由此引發的PAEs污染問題日趨嚴重[2, 4]。在農業活動中,PAEs污染問題尤為突出。He等[2]認為,農業中塑料薄膜的使用、市政固體廢物的排放、農藥的使用和廢水灌溉是我國農田PAEs污染的主要來源。對山東平原某蔬菜大棚PAEs污染的調查表明,37個采樣點共檢出16種PAEs,濃度均值為1.939~35.442 mg·kg-1,其中DBP、DMP、DEP和DEHP較高[4]。PAEs對農田生態系統的危害不僅體現在對土壤微生物和酶活性的抑制作用,還體現在對農作物產量和質量方面的影響[5]。

環境中PAEs的治理技術通常包含3類:物理-化學治理、生物治理和氧化降解[1-2]。其中,物理-化學治理的吸附法和絮凝-聚沉法、生物治理的微生物降解和植物修復以及光/氧化降解等工藝效果顯著[1-2]。然而,物理-化學或光/氧化工藝無法在PAEs污染土壤修復中大規模應用,還有可能導致二次污染。環境中PAEs的降解與分布在很大程度上取決于微生物的群落與功能差異,理解微生物介導的PAEs代謝機制可為PAEs環境歸趨研究與PAEs修復提供理論基礎[5]。本文以環境中最常見的PAEs(包括DBP、MBP、BBP、DEP和DEHP)為研究對象,綜述了目前國內外報道的PAEs降解菌及其多樣性、PAEs降解機理及PAEs降解菌的環境應用,擬從微生物學、分子生物學、生態學和環境化學等角度闡述PAEs降解菌在環境中的特性及其意義。

1 PAEs降解菌多樣性

微生物是環境的重要組成部分,其在地球上的出現可追溯至早太古代(~3.2 Ga)的河口沉積物中。極強的生命力、多樣性和適應能力造就了環境中豐富多彩的微生物世界。PAEs作為一種人工合成塑化劑其在環境中出現的年代并不久遠,但微生物很快對PAEs產生了適應能力,主要體現在對多種PAEs的有效降解[5]。環境中PAEs難以通過水解或光降解去除,研究認為微生物才是PAEs降解的主要參與者[1]。根據微生物分類學,PAEs降解菌以好氧細菌和部分真菌為主,具備厭氧降解功能的細菌較少[6]。另一方面,目前對PAEs降解菌群落結構與功能的認識還非常有限,關注PAEs降解的微生物群落效應是今后研究的重點內容。

2008年以前發現的PAEs降解細菌有節細菌Arthrobacter keyseri 12B(舊名為Micrococcus sp.),假單胞菌Pseudomonas fluorescens、P. putida、P. acidovorans、P. testosterone和P. pseodoalcaligenes,以及紅球菌Rhodococcus rubropertinctus等[6]。雖然PAEs降解菌報道廣泛,對其進行詳細的遺傳學分類較少。Liang等[6]統計表明,PAEs降解細菌主要分布在α、β和γ變形桿菌門(Proteobacteria),厚壁菌門(Firmicutes,低G+C含量),放線菌門(Actinobacteria,高G+C含量),擬桿菌門(Bacteroidetes)和綠菌門(Chlorobi)等5個門類的29個屬。奇異球菌-棲熱菌門(Deinococcus-Thermus)的2個菌株在2010年[7]和2014年[8]首次得到報道。目前PAEs降解細菌已擴充到了36個屬(表1和圖1A),有超過80個PAEs降解菌株得到了詳細的研究與報道。

進化分析顯示,具備PAEs降解能力的細菌集中在γ-Proteobacteria和Acinobacteria,其次是α和β-Proteobacteria,Firmicutes最少(圖1A)。其中,Sphingomonas、Comamonas、Pseudomonas、Arthobacter和Rodococcus是PAEs降解菌的主要屬[5]。這些微生物多數能以PAEs為唯一碳源和能源物質進行生長繁殖,且有近一半菌株具備降解多種PAEs的能力(表1)。例如,Wu等[9]研究表明,農桿菌Agrobacterium sp. JDC-49可同時降解DBP、DEP、DMP、鄰苯二甲酸二正辛酯(di-n-octyl phthalate, DOP)、鄰苯二甲酸二異壬酯(di-isononyl phthalate, DINP)和鄰苯二甲酸(phthalic acid, PA)等7種PAEs。類似的多功能菌株還包括Diaphorobacter sp. QH-6[10],Rhodococcus sp. JDC-11[11]和鞘氨醇單胞菌Sphingobium sp. SM42[12]等。

表1 部分已報道的PAEs降解細菌及其相關信息

注:DEHP=鄰苯二甲酸二(2-乙基己)酯,DBP=鄰苯二甲酸二丁酯,MBuP=鄰苯二甲酸單丁酯,PA=鄰苯二甲酸,DEP=鄰苯二甲酸二乙酯,DMP=鄰苯二甲酸二甲酯,MMP=單甲基鄰苯二甲酸,MEHP=鄰苯二甲酸單-2-乙基己酯,BBP=鄰苯二甲酸丁芐酯,DOP=鄰苯二甲酸二辛酯,DiOP=鄰苯二甲酸二異辛酯,PCA=原兒茶酸,MBeP=鄰苯二甲酸單芐酯,DPRP=鄰苯二甲酸丙酯,DPEP=脫氧葉紅初卟啉,DiBP=鄰苯二甲酸二異丁酯,DPP=鄰苯二甲酸二丙酯,MEHP=鄰苯二甲酸單(2-乙基己基)酯,BA=苯甲酸,DEHA=己二酸二(2-乙基己)酯,MEHA=單乙基己基酯,EHA=乙基己醇,EHAA=乙基己酸,DMIP=間苯二甲酸二甲酯,DMTP=對苯二甲酸二甲酯,TA=對苯二甲酸。a未提及,bDOP:DEHP的別稱。
Note:DEHP = di-2-ethylhexyl phthalate, DBP = di-butyl phthalate, MBuP = mono-n-butyl phthalate, PA = phthalic acid, DEP = diethyl phthalate, DMP = dimethyl phthalate, MMP = monomethyl phthalate, DPP = dipropyl phthalate, MEHP = mono-2-ethylhexyl phthalate, BBP = butyl benzyl phthalate, DOP = dioctyl phthalate, DiOP = di-iso-octyl phthalate, PCA = protocatechuic acid, MBeP = mono-benzyl phthalate, DPRP = dipropyl phthalate, DPEP = deoxophylloerythroetioporphyrins, DiBP = di-iso-butyl phthalate, MEHP = mono-2-ethylhexyl phthalate, BA = benzoic acid, DEHA = di-2-ethylhexyl adipate, MEHA = mono-ethylhexyl adipate, EHA= 2-ethylhexanal, EHAA = 2-ethylhexanoic acid, DMIP = dimethyl isophthalate, DMTP = dimethyl terephthalate, TA = terephthalic acid.anot mentioned,bDOP: also named DEHP.

圖1 基于16S rRNA(A)和鄰苯二甲酸酯雙加氧酶基因(B)序列同源性構建的細菌系統發育樹 注:圖示文獻報道且在NCBI數據庫同時提交了序列的鄰苯二甲酸酯降解菌的基因信息。圖1A中藍色框示該屬細菌的鄰苯二甲酸酯雙加氧酶基因已被提交到NCBI數據庫。Fig. 1 Rooted phylogenetic trees based on 16S rRNA (A) and phthalate dioxygenase gene (B) sequences Note: Figures show the gene information of PAEs-degrading bacteria those have been reported in the literature and whose sequences have been submitted to NCBI database. Blue boxes in Fig. 1A indicate that the phthalate dioxygenase genes in these bacteria have been submitted to NCBI database.

然而,目前對PAEs降解細菌的研究還比較基礎。在43株已報道且在NCBI數據庫提交了16S rRNA信息的細菌中只有35條序列的片段長度1200 bp,據此構建的系統進化樹如圖1A所示。對應PAEs降解菌的16S rRNA多樣性,只有Acinetobacter、Delftia、Sphingomonas、Rhdococcus和Gordonia等5個屬的10多個菌株其鄰苯二甲酸酯雙加氧酶基因(phthalate dioxygenase gene, PDOG)得到了克隆分析(圖1B)。除Delftia外,其他細菌均屬于Acinobacteria(圖1B),而R. coprophilus G9和Mycobacterium vanbaalenii PYR-1的PDOG片段長度只有420 bp和267 bp[13]。這說明,對于PAEs降解菌的分子生物學研究,未來還有很多工作值得開展。

2 PAEs對細菌群落的影響

環境中微生物資源豐富,但可培養微生物所占比例低于1%。如前所述,PAEs在環境中的廣泛分布會對微生物群落結構和酶活性產生影響,相應地,PAEs降解菌會對PAEs的環境歸趨產生直接或間接的作用[5]。

聚合酶鏈反應-變性梯度凝膠電泳(polymease chain reaction-denaturing gradient gel electrophoresis, PCR-DGGE)分析顯示,往土壤中添加DEP濃度高達10 mg·kg-1時,土壤微生物的種類降低到了個位數,主要包括Sphingomonas spp.、Pseudomonas spp.和Actinomycetes spp.[5]。Chen等[14]研究表明,DMP、DEP和DOP都會顯著降低土壤脲酶(urease)活性。有趣的是,即使DMP或DEP添加濃度高達500 mg·kg-1,脲酶活性也只降低了32%和31%。顯然,微生物對PAEs的抗性和降解緩和了污染物毒性[14]。類似地,Cartwright等[15]發現,DEP低至1 mg·kg-1即可在1 d內顯著降低土壤可培養細菌總數(47%,BIOLOG法),這可能與PAEs誘發的細菌細胞膜流動性增加有關。不同的是,DEHP并未對土壤微生物造成任何影響。事實上,土壤微生物數量變化與DEP的有效降解并無顯著相關性(降解半衰期為0.75 d);相反,DEHP在70 d后只減少了10%,說明微生物的數量并不能反映土壤微生物對PAEs的降解活性[15]。因此,PAEs誘導效應可能主要體現在對群落結構的調整以增加PAEs代謝菌群豐度,這與Kapane等[5]的結論相符。對土壤多種酶活性的檢測結果表明,添加DBP雖然降低了脲酶、纖維素酶(cellulose)和β-葡萄糖苷酶(β-glucosidase)活性,卻增強了脫氫酶(dehydrogenase)、催化酶(catalase)、蛋白酶(protease)和磷酸酶(phosphatase)活性[16]。這種現象與微生物總數降低卻依然能夠有效降解PAEs是一致的,即具備PAEs降解功能的細菌在污染物誘導下成為了優勢菌群。例如,Wang等[17]發現,隨著DMP濃度從5 mg·kg-1升至20 mg·kg-1,微生物群落分類單元(operational taxonomic units, OTUs)隨之降低,但DMP降解效率卻隨之升高,說明優勢菌的存在是DMP降解的主要貢獻者。

雖然環境中PAEs的微生物行為已有諸多報道,現有研究并未很好地跟蹤微生物群落變化的基本規律。這一方面與環境體系的復雜性有關,同時也與PAEs種類的多樣性及微生物降解PAEs的特異性及互作效用密切相關(見下文)。由于對PAEs降解菌種類及功能認識的不足(表1和圖1),PAEs降解基因的多樣性及其環境意義仍是今后研究的重點內容。

3 微生物降解PAEs的特異性和降解效率

研究指出,某些降解菌可同時代謝多種PAEs,但已報道的80多個菌株中超過50%只能代謝1種底物(表1)。此外,具備多種PAEs代謝功能的微生物也存在底物特異性,這種現象早于2003年已在Arthrobacter sp.和S. paucimobilis中被觀察到。研究發現,Arthrobacter sp.可迅速將DMP降解為鄰苯二甲酸單甲酯(monomethyl phthalate, MMP)和PA,此后PA被繼續代謝為CO2和H2O;然而,該菌不能繼續代謝MMP,卻由S. paucimobilis完成這個過程[59]。最近研究也發現,Camelimonas sp. M11對DBP、DEP、鄰苯二甲酸二丙酯(dipropyl phthalate, DPP)和鄰苯二甲酸二戊酯(dipentyl phthalate, DNPP)有很強的降解能力,但不能降解DMP[32]。Vega等[59]認為,DBP被Arthrobacter sp.和S. paucimobilis代謝存在DBP→PA和DBP→MMP兩種機制,并提出環境微生物協同完成復合污染物代謝的假設(見下文)。

鑒于微生物對PAEs的碳源利用特性,理論上它們具備較強的PAEs耐受能力和降解能力。一般而言,PAEs側鏈越短,微生物降解效率也越高。然而,PAEs降解酶活性不受側鏈長度影響,而與側鏈產生的空間位阻有關[6]。Liang等[24]發現,不動桿菌Acinetobacter sp. JDC-16在20 h內(pH=8、35oC)可將500 mg·L-1DEP完全降解。動力學擬合結果表明,該菌在500 mg·L-1DEP暴露下只需6.9 h即可達到穩定期,DEP降解常數Rm高達54 mg·L-1·h-1[24]。多數PAEs降解菌對DBP的降解能力也很強。例如,Diaphorobacter sp. QH-6對500 mg·L-1底物的降解半衰期只需5.2 h[10],而R. ruber DP-2和Enterobacter sp. T5對高達1 200和1 500 mg·L-1DBP的降解半衰期也只需近30 h[36, 53]。相較而言,細菌對結構較復雜、分子量較大的BBP降解能力較差。例如,在最優pH條件下,P. fluorescence B-1對10 mg·L-1BBP代謝速率低至0.03 mg·L-1·h-1[49];Acinetobacter sp. FW略高,為2.1 mg·L-1·h-1[22]。類似地,雖然P. fluorescence FS1在60 d內可將200 mg·L-1DEHP中的75%有效降解,但降解半衰期高達17 d[63]。有趣的是,B. subtilis No. 66對DEHP有較強的降解能力,但幾乎不能降解DBP或只能降解DEP、脫氧葉紅初卟啉(deoxophylloerythroetioporphyrins, DPEP)和鄰苯二甲酸丙酯(dipropyl phthalate, DPRP)的一小部分[64]。

值得注意的是,在污染物結構特定的情況下,微生物對PAEs的降解能力往往取決于微生物本身[23]。例如,Yang等[23]發現,Acinetobacter sp. HS-B1和Arthrobacter sp. HS-B2對起始濃度為500 mg·L-1BBP的24 h降解率分別達28%和59%。當培養基中添加1%LB時,HS-B1和HS-B2對BBP的去除率提高到了40%和75%,說明微生物對PAEs的代謝不僅是碳源利用,還可能存在純粹的酶學解毒過程[23]。此外,Gordonia sp. MTCC 4818和P8219對PAEs的高效降解也備受關注,其對80 μmol BBP的90 h降解率和1 300 mg·L-1DEHP的45 h降解率可達100%[39-40]。

4 微生物介導的PAEs降解機理

如表1所示,多數微生物可以PAEs為唯一碳源和能源物質進行代謝生長。然而,微生物無法直接利用長側鏈或帶苯環等復雜結構的有機物大分子,將長碳側鏈縮短、將雙側鏈降解成單側鏈、將苯環開環并進一步代謝成CO2和H2O是微生物代謝PAEs的主要步驟[6]。雖然目前報道的PAEs降解酶基因信息很少(圖1B),通過代謝產物分析技術如氣相色譜-質譜聯用(Gas Chromatograph-Mass Spectrometer, GC-MS)和液相色譜-質譜聯用(Liquid Chromatography-Mass Spectrometer, LC-MS)等可推測幾種比較經典的微生物代謝路徑。

4.1 PAEs側鏈的降解

側鏈代謝是PAEs微生物降解的首要步驟,包括β-氧化作用(β-oxidation)、轉酯化(trans-esterificaiton)或去烷基化作用(de-alkylation)和脫脂化作用(de-esterificaiton)[6]。對于側鏈雙酯基碳數大于2的PAEs,β-氧化介導的長鏈降解是一種很重要的代謝機制,該過程涉及雙鏈乙烷基的同時脫落。Amir等[65]研究表明,在堆肥中添加DBP后,底泥中檢測到了DEP和DMP,說明DBP→DEP的代謝過程屬于β-氧化(圖2)。然而,目前關于PAEs的β-氧化作用并未在純菌體系中得到研究。對于PAEs單側鏈的降解,則以轉酯化或脫脂化作用為主。如圖2所示,DEP→EMP→DMP屬于單側鏈的烷基脫落,這種側鏈酯基發生變化的過程又稱為轉酯基作用。該路徑最早由Cartwright等[66]于2000年提出,與β-氧化作用類似,其后續研究并未得到充分的開展。目前報道的唯一一種具備轉酯化作用的微生物是A. lwoffii R-3[21]。脫脂化作用是研究最透徹的PAEs降解路徑,其與側鏈烷基變化無關,而是將PAEs一側或雙側酯基水解,產物為帶苯環的酸類物質。例如,某些微生物可將DEHP一側酯基脫落形成MEHP,MEHP酯基可被進一步水解成PA(圖2)。這類微生物有G. polyisoprenivorans p8219[40]、Microbacterium sp. CQ0110Y[41]、P. fluorescens FS1[63]和M. luteus等[42](表1)。類似地,DBP→MBuP,BBP→MBzP,MBzP、DEP、DMP和MMP→PA都屬于微生物介導的脫脂化降解,相關微生物包括Gordonia sp. MTCC 4818[39]、Atrhrobacter sp. WY[22]、Paenibacillus sp. S-3/H-2[47-48]和P. fluorescens B-1[49]等(表1)。研究發現,脫脂化作用在厭氧和好氧條件下都可發生,該過程由酯酶介導完成[40, 59-60]。

如圖2所示,PA是PAEs的代謝“中轉站”,PA的進一步代謝與環境中含氧量有關。在好氧條件和3,4或4,5-鄰苯二甲酸酯雙加氧酶作用下,PA可被降解成3,4或4,5-雙羥基鄰苯二甲酸酯,進而形成PCA[6]。在厭氧條件下,PA將被轉化成苯甲酸(benzoic acid, BAc),其中一部分BAc可轉化成PCA并進入下一步代謝[6](圖2)。由此可見,除PA外,PCA是PAEs降解的另一重要“中轉站”。

需要指出的是,BBP的微生物降解產物還包括苯甲醇(benzyl alcohol, BAl)和1-丁醇(1-butanol)。與PA厭氧代謝類似,BAl可在相同條件下被代謝成BAc,從而進入下一個代謝路徑(圖2)。在Acinetobacter sp. FW和Gordonia sp. MTCC 4818等菌株中,1-丁醇的代謝主要由β-氧化作用完成[22, 39]。β-氧化作用的產物CO2和H2O將進入三羧酸循環(TCA cycle),為微生物生長提供碳源物質(圖2)。

圖2 微生物降解鄰苯二甲酸酯的可能路徑 注:實線和虛線分別表示PAEs的主要和次要代謝路徑。Fig. 2 Possible pathways involved in microbes-mediated PAEs degradation Note: Solid and dotted lines indicate the major and minor pathways of PAEs degradation respectively.

4.2 PAEs苯環的降解

苯環降解是實現PAEs碳源利用的重要步驟,該過程以PA、PCA和BAc為主要代謝中間產物。在好氧條件下,革蘭氏陽性菌可將PA轉變成順-3,4-雙氫-3,4-雙羥基鄰苯二甲酸酯(cis-3,4-dihydro-3,4-dihydroxyphthalate),而革蘭氏陰性細菌則在苯環的4,5位發生雙氧化,產生順-4,5-雙氫-4,5-雙羥基鄰苯二甲酸酯[6](圖2)。例如,R. ruber DP-2同時含有酚水解酶基因(phenol hydroxylase gene, pheu)和3,4-鄰苯二甲酸酯雙加氧酶基因(pht),其對600~1 200 mg·L-1DBP的降解時間只需15.8~27.8 h[53]。DBP經進一步還原和脫羧基作用,可被轉化成另一種重要的代謝中間產物PCA。若PCA發生鄰位(ortho-)或間位(meta-)解環,可分別產生β-酮基己二酸(β-ketoadipate)和4-羧基-2-雙羥基粘康半醛(4-carboxy-2-hydroxymuconic semialdehyde)。經一系列代謝后,產生的草酰乙酸(oxaloacetate)和丙酮酸(pyruvate)將進入TAC循環[6](圖2)。Eaton和Ribbons[67]認為,Micrococcus sp. 12B對DBP的降解屬于這一代謝路徑。以PCA為代謝中間產物,PAEs的完全降解還可通過β-羧基-順,順-粘康酸(β-carboxy-cis, cis-muconate)→γ-羧基-粘康酸內酯(γ-carboxy muconolactone)→TCA路徑實現,這種代謝機制已在Arthrobacter sp. WY中得到了詳細研究[22]。

除PCA外,BAc是PAEs代謝的另一“二級中轉站”。如前所述,有部分PA在好氧條件下可通過BAc路徑實現完全降解,而BAl→BAc轉化發生在厭氧條件下[6](圖2)。除BAc→PCA代謝路徑外,目前還發現了另外3種典型的降解機制。第1種是BAc→1-環己烯羧酸(1-cyclohexene carboxylic acid)→2-羥基環己烷羧酸(2-hydroxy-cyclohexane carboxylic acid)→己二酸(adipic acid)路徑。例如,Chatterjee和Dutta[39]報道顯示,Gordonia sp. MTCC 4818不能將PA轉化成PCA,但可實現BAc的己二酸代謝。第2種是BAc→2-羥基苯甲酸(benzenecarboxylic acid)→苯酚(phenol)→鄰苯二酚(catechol)→順,順-己二烯二酸(cis, cis-muconic acid)→粘康酸內酯(muconolactone)路徑。P. fluorescence FS1是該降解路徑的代表菌株[50, 63]。在某些情況下,微生物還可將BAc轉化成不穩定的中間產物如順-1,6-雙羥基-2,4-環己二烯-1-羧酸(cis-1,6-dihydroxy-2,4-cyclohenadiene-1-carboxylic acid),此后進入類似于路徑二的代謝過程(圖2)。Chatterjee和Dutta[22]驗證了Acinetobacter sp. FW中該代謝路徑的存在。

4.3 PAEs的協同代謝機制

微生物介導的PAEs降解是一個復雜系統,不同微生物或同一微生物在不同條件下,其代謝路徑都可能存在較大差異(圖2)。某些微生物代謝PAEs的能力很強。例如,P. fluorescence FS1可將DEHP進行逐級降解,產生終產物CO2和H2O[50, 63]。具備完全降解功能的微生物還包括Flavobacterium sp. A-1/A-9[37-38]、B. thuringiensis HD-1[30]和Variovorax sp. BS1[62]等(表1)。通常而言,具備產生CO2和H2O的菌株屬于PAEs完全代謝菌。然而,環境中某些微生物不具備完全代謝PAEs的能力,該過程往往需要多種微生物的協同作用。例如,Vega和Bastide[59]研究發現,Arthrobacter sp.可將DMP代謝成MMP和PA,但該菌不能進一步代謝MMP。當該菌與篩自同一土壤的微生物S. paucimobilis (MMP降解菌)混合培養后,DMP和MMP都未在培養基中被檢測到,說明二者共存時可協同代謝PAEs。由此可見,實際環境中PAEs的降解往往是多種微生物共同作用的結果[22]。

5 PAEs降解菌的環境應用

5.1 微生物修復PAEs污染水體/底泥

固定化技術是實現微生物負載及污染物環境治理的常規手段。為提高PAEs降解菌的活性持留,微生物固定化技術在PAEs廢水中的應用也逐漸得到了推廣[1]。在固定化微生物治理PAEs的實踐中,清華大學王建龍教授課題組做出了突出貢獻。1995年,作者率先嘗試以聚乙烯醇(polyvinyl alcohol, PVA)固定化基質包埋微生物對DBP的降解研究[69]。結果表明,菌株A固定化小球可在40 h內將100 mg·L-1DBP完全降解,且固定化細胞的降解活性比游離細胞更高。目前已報道的固定化菌還包括B. subtilis[28],Bacillus sp.[26]、Micrococcus sp.[43]和Variovorax sp. BS1[62]等。為實現PAEs污染水體的有效治理,混合包埋不同功能的PAEs降解菌是今后研究的主要方向。

我國部分地區的底泥PAEs濃度高達1 250 mg·kg-1[2]。考慮到微生物固定化技術在底泥修復中應用的局限性,越來越多研究將重點轉向土著微生物的篩選與回用。如表1所示,目前已得到深入研究的PAEs降解菌超過34種來源于底泥或沉積物。利用活性污泥中微生物群落的群感效應,可實現廢水中PAEs的有效治理[1, 6]。Chang等[70]發現,好氧條件下,微生物對底泥中50 mg·L-1DEP、DBP、BBP和DEHP的降解半衰期只需2.7、1.8、2.1和3.8 d。底泥中PAEs在厭氧條件下的降解速率也很高。例如,10 mg·L-1DMP和DBP的降解半衰期低至1.0和1.4 d,但DOP的降解半衰期比較長,為19.4 d[71]。以上結論說明PAEs的微生物降解與其結構密切相關[1, 6]。因此,在長鏈PAEs濃度較高的廢水中,有必要采取微生物-物理/化學(如高級氧化技術)相結合的手段實現其有效治理[1]。此外,研究發現,當往底泥中添加壬基酚(nonylphenol)或多環芳烴(polycyclic aromatic hydrocarbons, PAHs)時,Sphigomonas sp. DK4和Corynebacterium sp. O18對PAEs的降解能力會受到顯著抑制[34]。鑒于PAEs污染廢水可能還包含其他有毒有害重(類)金屬和有機污染物,篩選具備多種污染物抗性的菌株及其生理生化研究是工程應用的基礎。

5.2 微生物修復PAEs污染土壤

土壤微生物已被證明具備降解多種PAEs的能力(表1),利用這些微生物回土修復是一種理想的方法。Wang等[55]從DEHP污染土壤篩得一株高效降解菌Rhodococcus sp. WJ4,在液體培養基中該菌對200 mg·L-1DEHP的去除率高達96.4%。土壤修復實驗表明,WJ4對1 g·kg-1DEHP污染土壤的21 d修復率達55%,顯示出了較好的應用潛力。然而,類似的PAEs污染土壤的微生物修復實例未見報道。現有研究表明,生物泥漿和固相反應器(bioslurry and solid-phase bioractors, BSSB)修復污染土壤是比較可行的技術,目前已得到了一些推廣與應用[2, 6]。例如,利用BSSB修復技術,Di Gennaro等[72]將5.51 mg·g-1DEHP降至0.63 mg·g-1,76 d內總去除率高達89%。這種方法的可行性取決于微生物培養條件的可控程度及營養物質的供給效率[72]。若土壤中添加堆肥的粒徑很小,也有助于提高PAEs的降解效率[2]。

由此可見,將微生物進行回土修復或在泥漿相中進行強化修復都是可行的。Liang等[6]認為,生物泥漿法修復PAEs污染土壤的優勢主要體現在1) 營養物質、末端電子受體和底物的均勻分布;2) 提高了微生物與污染物的有效接觸。不足的是,生物泥漿法需要反復挖掘土壤,因此限制了其修復能力和實際應用[2]。

6 結論與展望

多數PAEs都具有內分泌干擾作用且廣泛存在于各種環境介質中,實施PAEs的土壤和水體修復是保證人體健康的重要舉措。微生物對多種PAEs都具備較強的降解能力。目前已有6個門類、30多個屬的80多個PAEs降解菌株得到了詳細研究,通過GC-MS和LC-MS等檢測技術或代謝路徑的模型擬合[54]提出了PAEs代謝的微生物學機制。然而,已報道的PAEs微生物降解酶基因數量有限,這限制了從生物化學和分子生物學水平認識PAEs代謝的機理,同時也不利于環境中PAEs降解菌的群落結構分析和功能研究。雖然PAEs污染水體(底泥)的微生物修復已取得一定成效,土壤修復仍是當前PAEs污染治理的主要內容。

基于PAEs微生物代謝的重要性及當前研究的不足,今后的工作可從以下幾方面展開:1) 在現有基礎上繼續篩選PAEs降解菌并研究其降解能力;2) 深入闡釋現有PAEs降解菌代謝PAEs的分子生物學機制,推動對新獲菌株的全面研究;3) 利用高通量分析技術等實現對環境中PAEs降解菌多樣性的充分認識;4) 繼續探討PAEs降解菌在土壤和水體污染治理中的應用。

[1] Abdel daiem M M, Rivera-Utrilla J, Ocampo-Pérez R, et al. Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies-A review [J]. Journal of Environmental Management, 2012, 109: 164-178

[2] He L, Gielen G, Bolan N S, et al. Contamination and remediation of phthalic acid esters in agricultural soils in China: A review [J]. Agronomy for Sustainable Development, 2015, 35(2): 519-534

[3] IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans. Industrial Chemicals [S]. Lyon, France: International Agency for Research on Cancer, 2000

[4] Liu X, Shi J, Bo T, et al. Occurrence of phthalic acid esters in source waters: A nationwide survey in China during the period of 2009-2012 [J]. Environmental Pollution, 2014, 184: 262-270

[5] Kapanen A, Stephen J R, Bruggemann J, et al. Diethyl phthalate in compost: ecotoxicological effects and response of the microbial community [J]. Chemosphere, 2007, 67(11): 2201-2209

[6] Liang D W, Zhang T, Fang H H, et al. Phthalates biodegradation in the environment [J]. Applied Microbiology and Biotechnology, 2008, 80(2): 183-198

[7] Liao C S, Chen L C, Chen B S, et al. Bioremediation of endocrine disruptor di-n-butyl phthalate ester by Deinococcus radiodurans and Pseudomonas stutzeri [J]. Chemosphere, 2010, 78(3): 342-346

[8] Yang C F, Wang C C, Chen C H. Di-n-butyl phthalate removal by strain Deinococcus sp. R5 in batch reactors [J]. International Biodeterioration & Biodegradation, 2014, 95: 55-60

[9] Wu X, Wang Y, Liang R, et al. Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate by newly isolated Agrobacterium sp. and the biochemical pathway [J]. Process Biochemistry, 2011, 46(5): 1090-1094

[10] Jin D, Wang P, Bai Z, et al. Biodegradation of di-n-butyl phthalate by a newly isolated Diaphorobacter sp. strain QH-6 [J]. African Journal of Microbiology Research, 2011, 5: 1322-1328

[11] Jin D C, Liang R X, Dai Q Y, et al. Biodegradation of di-n-butyl phthalate by Rhodococcus sp. JDC-11 and molecular detection of 3,4-phthalate dioxygenase gene [J]. Journal of Microbiology and Biotechnology, 2010, 20(10): 1440-1445

[12] Whangsuk W, Sungkeeree P, Nakasiri M, et al. Two endocrine disrupting dibutyl phthalate degrading esterases and their compensatory gene expression in Sphingobium sp. SM42 [J]. International Biodeterioration & Biodegradation, 2015, 99: 45-54

[13] Chao W, Lin C, Shiung I, et al. Degradation of di-butyl-phthalate by soil bacteria [J]. Chemosphere, 2006, 63(8): 1377-1383

[14] Chen H, Zhuang R, Yao J, et al. A comparative study on the impact of phthalate esters on soil microbial activity [J]. Bulletin of Environmental Contamination and Toxicology, 2013, 91(2): 217-223

[15] Cartwright C D, Thompson I P, Burns R G. Degradation and impact of phthalate plasticizers on soil microbial communities [J]. Environmental Toxicology and Chemistry, 2000, 19(5): 1253-1261

[16] Zhou Q, Wu Z, Cheng S, et al. Enzymatic activities in constructed wetlands and di-n-butyl phthalate (DBP) biodegradation [J]. Soil Biology and Biochemistry, 2005, 37(8): 1454-1459

[17] Wang Z G, Hu Y L, Xu W H, et al. Impacts of dimethyl phthalate on the bacterial community and functions in black soils [J]. Frontiers in Microbiology, 2015, 6: 405, doi: 10.3389/fmicb.2015.00405

[18] Pradeep S, Josh M S, Binod P, et al. Achromobacter denitrificans strain SP1 efficiently remediates di (2-ethylhexyl) phthalate [J]. Ecotoxicology and Environmental Safety, 2015, 112: 114-121

[19] 段星春, 易筱筠, 楊曉為, 等. 兩株鄰苯二甲酸二丁酯降解菌的分離鑒定及降解特性的研究[J]. 農業環境科學學報, 2007, 26(6): 1937-1941

Duan X C, Yi X Y, Yang X W, et al. Isolation and characterization of two di-n-butyl phthalate degrading bacteria [J]. Journal of Agro-Environment Science, 2007, 26(6): 1937-1941 (in Chinese)

[20] Latorre I, Hwang S, Montalvo-Rodriguez R. Isolation and molecular identification of landfill bacteria capable of growing on di-(2-ethylhexyl) phthalate and deteriorating PVC materials [J]. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 2012, 47(14): 2254-2262

[21] Okamoto Y, Toda C, Ueda K, et al. Transesterification in the microbial degradation of phthalate esters [J]. Journal of Health Science, 2011, 57(3): 293-299

[22] Chatterjee S, Dutta T K. Complete degradation of butyl benzyl phthalate by a defined bacterial consortium: Role of individual isolates in the assimilation pathway [J]. Chemosphere, 2008, 70(5): 933-941

[23] Yang X, Zhang C, He Z, et al. Isolation and characterization of two n-butyl benzyl phthalate degrading bacteria [J]. International Biodeterioration & Biodegradation, 2013, 76: 8-11

[24] Liang R X, Wu X L, Wang X N, et al. Aerobic biodegradation of diethyl phthalate by Acinetobacter sp. JDC-16 isolated from river sludge [J]. Journal of Central South University of Technology, 2010, 17: 959-966

[25] Jackson M, Labeda D, Becker L. Isolation for bacteria and fungi for the hydrolysis of phthalate and terephthalate esters [J]. Journal of Industrial Microbiology, 1996, 16(5): 301-304

[26] Wang J L, Ye Y C, Wu W Z. Comparison of di-n-methyl phthalate biodegradation by free and immobilized microbial cells [J]. Biomedical and Environmental Sciences, 2003, 16(2): 126-132

[27] Rosales E, Cobas M, Tavares T, et al. Removal of di-(2-ethylhexyl) phthalate (DEHP) from water using a LECA-Pseudomonas putida biobarrier [C]. The 12th International Chemical and Biological Engineering Conference (CHEMPOR 2014), Portugal, 2014: 142-144

[28] Sompornpailin D, Siripattanakul-Ratpukdi S, Vangnai A S. Diethyl phthalate degradation by the freeze-dried, entrapped Bacillus subtilis strain 3C3 [J]. International Biodeterioration & Biodegradation, 2014, 91: 138-147

[29] Brar S K, Verma M, Tyagi R, et al. Concurrent degradation of dimethyl phthalate (DMP) during production of Bacillus thuringiensis based biopesticides [J]. Journal of Hazardous Materials, 2009, 171(1): 1016-1023

[30] Surhio M A, Talpur F N, Nizamani S M, et al. Complete degradation of dimethyl phthalate by biochemical cooperation of the Bacillus thuringiensis strain isolated from cotton field soil [J]. RSC Advances, 2014, 4(99): 55960-55966

[31] Wang Y, Yin B, Hong Y, et al. Degradation of dimethyl carboxylic phthalate ester by Burkholderia cepacia DA2 isolated from marine sediment of South China Sea [J]. Ecotoxicology, 2008, 17(8): 845-852

[32] Chen X, Zhang X, Yang Y, et al. Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate by newly isolated Camelimonas sp. and enzymatic properties of its hydrolase [J]. Biodegradation, 2015, 26(2): 171-182

[33] Wang Y, Fan Y, Gu J D. Aerobic degradation of phthalic acid by Comamonas acidovoran Fy-1 and dimethyl phthalate ester by two reconstituted consortia from sewage sludge at high concentrations [J]. World Journal of Microbiology and Biotechnology, 2003, 19(8): 811-815

[34] Chang B, Yang C, Cheng C, et al. Biodegradation of phthalate esters by two bacteria strains [J]. Chemosphere, 2004, 55(4): 533-538

[35] Patil N K, Kundapur R, Shouche Y S, et al. Degradation of plasticizer di-n-butylphthalate by Delftia sp. TBKNP-05 [J]. Current Microbiology, 2006, 52(5): 369-374

[36] Fang C R, Yao J, Zheng Y G, et al. Dibutyl phthalate degradation by Enterobacter sp. T5 isolated from municipal solid waste in landfill bioreactor [J]. International Biodeterioration & Biodegradation, 2010, 64(6): 442-446

[37] Tanaka T, Yamada K, Iijima T, et al. Complete degradation of the endocrine-disrupting chemical phthalic acid by Flavobacterium sp. [J]. Journal of Health Science, 2006, 52(6): 800-804

[38] Kido Y, Tanaka T, Yamada K, et al. Complete degradation of the endocrine-disrupting chemical dimethyl phthalate ester by Flavobacterium sp. [J]. Journal of Health Science, 2007, 53(6): 740-744

[39] Chatterjee S, Dutta T K. Metabolism of butyl benzyl phthalate by Gordonia sp. strain MTCC 4818 [J]. Biochemical and Biophysical Research Communications, 2003, 309(1): 36-43

[40] Nishioka T, Iwata M, Imaoka T, et al. A mono-2-ethylhexyl phthalate hydrolase from a Gordonia sp. that is able to dissimilate di-2-ethylhexyl phthalate [J]. Applied and Environmental Microbiology, 2006, 72(4): 2394-2399

[41] Chen J A, Li X, Li J, et al. Degradation of environmental endocrine disruptor di-2-ethylhexyl phthalate by a newly discovered bacterium, Microbacterium sp. strain CQ0110Y [J]. Applied Microbiology and Biotechnology, 2007, 74(3): 676-682

[42] Baek J H, Gu M B, Sang B I, et al. Risk reduction of adverse effects due to di-(2-ethylhexyl) phthalate (DEHP) by utilizing microbial degradation [J]. Journal of Toxicology and Environmental Health, Part A: Current Issues, 2009, 72(21-22): 1388-1394

[43] Hu J, Yang Q. Microbial degradation of di-n-butyl phthalate by Micrococcus sp. immobilized with polyvinyl alcohol [J]. Desalination and Water Treatment, 2015, 56(9): 2457-2463

[44] Nakamiya K, Hashimoto S, Ito H, et al. Microbial treatment of bis (2-ethylhexyl) phthalate in polyvinyl chloride with isolated bacteria [J]. Journal of Bioscience and Bioengineering, 2005, 99(2): 115-119

[45] Stingley R L, Brezna B, Khan A A, et al. Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1 [J]. Microbiology, 2004, 150(11): 3749-3761

[46] Wu X L, Wang Y Y, Liang R X, et al. Degradation of di-n-butyl phthalate by newly isolated Ochrobactrum sp. [J]. Bulletin of Environmental Contamination and Toxicology, 2010, 85(3): 235-237

[47] Jin L, Sun X, Zhang X, et al. Co-metabolic biodegradation of DBP by Paenibacillus sp. S-3 and H-2 [J]. Current Microbiology, 2014, 68(6): 708-716

[48] 金雷, 嚴忠雍, 施慧, 等. 鄰苯二甲酸二丁酯DBP降解菌S-3的分離、鑒定及其代謝途徑的初步研究[J]. 農業生物技術學報, 2014, 22(1): 101-108

Jin L, Yan Z Y, Shi H, et al.Identification of a dibutyl phthalate (DBP)-degrading strain S-3 and preliminary studies on the metabolic pathway [J]. Journal of Agricultural Biotechnology, 2014, 22(1): 101-108 (in Chinese)

[49] Xu X R, Li H B, Gu J D. Metabolism and biochemical pathway of n-butyl benzyl phthalate by Pseudomonas fluorescens B-1 isolated from a mangrove sediment [J]. Ecotoxicology and Environmental Safety, 2007, 68(3): 379-385

[50] Zeng F, Cui K, Li X, et al. Biodegradation kinetics of phthalate esters by Pseudomonas fluoresences FS1 [J]. Process Biochemistry, 2004, 39(9): 1125-1129

[51] Meng X, Niu G, Yang W, et al. Di (2-ethylhexyl) phthalate biodegradation and denitrification by a Pseudoxanthomonas sp. strain [J]. Bioresource Technology, 2015, 180: 356-359

[52] Sauvageau D, Cooper D G, Nicell J A. Relative rates and mechanisms of biodegradation of diester plasticizers mediated by Rhodococcus rhodochrous [J]. The Canadian Journal of Chemical Engineering, 2009, 87(3): 499-506

[53] He Z, Niu C, Lu Z. Individual or synchronous biodegradation of di-n-butyl phthalate and phenol by Rhodococcus ruber strain DP-2 [J]. Journal of Hazardous Materials, 2014, 273: 104-109

[54] Li J, Gu J-D, Pan L. Transformation of dimethyl phthalate, dimethyl isophthalate and dimethyl terephthalate by Rhodococcus rubber Sa and modeling the processes using the modified Gompertz model [J]. International Biodeterioration & Biodegradation, 2005, 55(3): 223-232

[55] Wang J, Zhang M Y, Chen T, et al. Isolation and identification of a di-(2-ethylhexyl) phthalate-degrading bcterium and its role in the bioremediation of a contaminated soil [J]. Pedosphere, 2015, 25(2): 202-211

[56] 曹相生, 孟雪征, 任書魁, 等. 一株DEHP降解菌的篩選和分子鑒定[J]. 環境科學與技術, 2011, 34(12): 217-220

Cao X S, Meng X Z, Ren S K, et al. Isolation and phylogenitic analysis of a bis (2-ethylhexyl) phthalate degrading bacterial strain [J].Environmental Science & Technology, 2011, 34(12): 217-220 (in Chinese)

[57] Li C, Tian X, Chen Z, et al. Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate by Serratia marcescens C9 isolated from activated sludge [J]. African Journal of Microbiology Research, 2012, 6(11): 2686-2693

[58] Zeng P, Moy B Y P, Song Y H, et al. Biodegradation of dimethyl phthalate by Sphingomonas sp. isolated from phthalic-acid-degrading aerobic granules [J]. Applied Microbiology and Biotechnology, 2008, 80(5): 899-905

[59] Vega D, Bastide J. Dimethylphthalate hydrolysis by specific microbial esterase [J]. Chemosphere, 2003, 51(8): 663-668

[60] Zhang X Y, Fan X, Qiu Y J, et al. Newly identified thermostable esterase from Sulfobacillus acidophilus: Properties and performance in phthalate ester degradation [J]. Applied and Environmental Microbiology, 2014, 80(22): 6870-6878

[61] Pranaw K, Singh S, Dutta D, et al. Biodegradation of dimethyl phthalate by an entomopathogenic nematode symbiont Xenorhabdus indica strain KB-3 [J]. International Biodeterioration & Biodegradation, 2014, 89: 23-28

[62] Prasad B, Suresh S. Biodegradation of dimethyl phthalate ester using free cells, entrapped cells of Variovorax sp. BS1 and cell free enzyme extracts: A comparative study [J]. International Biodeterioration & Biodegradation, 2015, 97: 179-187

[63] Zeng F, Cui K, Fu J, et al. Biodegradability of di (2-ethylhexyl) phthalate by Pseudomonas fluorescens FS1 [J]. Water, Air, & Soil Pollution, 2002, 140(1-4): 297-305

[64] Quan C, Liu Q, Tian W, et al. Biodegradation of an endocrine-disrupting chemical, di-2-ethylhexyl phthalate, by Bacillus subtilis No. 66 [J]. Applied Microbiology and Biotechnology, 2005, 66(6): 702-710

[65] Amir S, Hafidi M, Merlina G, et al. Fate of phthalic acid esters during composting of both lagooning and activated sludges [J]. Process Biochemistry, 2005, 40(6): 2183-2190

[66] Cartwright C D, Owen S A, Thompson I P, et al. Biodegradation of diethyl phthalate in soil by a novel pathway [J]. FEMS Microbiology Letters, 2000, 186(1): 27-34

[67] Eaton R W, Ribbons D W. Metabolism of dibutylphthalate and phthalate by Micrococcus sp. strain 12B [J]. Journal of Bacteriology, 1982, 151(1): 48-57

[68] Chauret C, Mayfield C I, Inniss W E. Biotransformation of di-n-butyl phthalate by a psychrotrophic Pseudomonas fluoresceins (BGW) isolated from subsurface environment [J]. Canadian Journal of Microbiology, 1995, 41(1): 54-63

[69] Wang J, Liu P, Qian Y. Microbial degradation of di-n-butyl phthalate [J]. Chemosphere, 1995, 31(9): 4051-4056

[70] Chang B, Wang T, Yuan S. Biodegradation of four phthalate esters in sludge [J]. Chemosphere, 2007, 69(7): 1116-1123

[71] Wang J, Chen L, Shi H, et al. Microbial degradation of phthalic acid esters under anaerobic digestion of sludge [J]. Chemosphere, 2000, 41(8): 1245-1248

[72] Di Gennaro P, Collina E, Franzetti A, et al. Bioremediation of diethylhexyl phthalate contaminated soil: A feasibility study in slurry-and solid-phase reactors [J]. Environmental Science & Technology, 2005, 39(1): 325-330

Phthalic Acid Esters-degrading Bacteria: Biodiversity, Degradation Mechanisms and Environmental Applications

Han Yonghe, He Ruiwen, Li Chao, Xiang Ping, Luo Jun, Cui Xinyi*

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China

Phthalic acid esters (PAEs) are typical persistent organic pollutants (POPs) that can disrupt endocrine systems in humans. Long-term exposure to PAEs can induce toxic effects to living organisms in various environmental matrixes, including water body, sediment and soil. PAEs are persistent and frequently detected with high concentrations in environment, which consequently limit their effective removal from contaminated sites. With high tolerance for contaminants and outstanding ability to biodegrade contaminants, microbes show great potentials to bio-remediate PAE-contaminated sites. Compared to physical and chemical approaches, microbial remediation technology has several advantages, including easy manipulation, large-scale application in remediation and high flexibility. The aims of this review are to summarize most of the reported bacterial species, metabolic mechanisms mediated by PAE-degrading bacteria, and the applications of these bacteria in remediation of PAEs-polluted water and soil. This review can provide some new information for further studies on the bio-remediation of PAEs.

endocrine disrupter; persistent organic pollutants; phthalic acid esters; microbes; biodegradation; health risk

10.7524/AJE.1673-5897.20151107002

江蘇省自然科學基金青年科學基金項目(BK20130558);國家自然科學基金青年科學基金項目(21307055)

韓永和(1986-),男,博士研究生,研究方向為污染物的環境微生物行為,E-mail:hanyonghe0423@163.com

*通訊作者(Corresponding author), E-mail: lizzycui@nju.edu.cn

2015-11-07 錄用日期:2015-12-22

1673-5897(2016)2-037-13

X171.5

A

簡介:崔昕毅(1983-),女,環境工程博士,副教授,主要研究有機污染物的環境行為、生態風險評價及修復和痕量有機物的環境分析監測,發表SCI論文20余篇。

韓永和, 何睿文, 李超, 等. 鄰苯二甲酸酯降解細菌的多樣性、降解機理及環境應用[J]. 生態毒理學報,2016, 11(2): 37-49

Han Y H, He R W, Li C, et al. Phthalic acid esters-degrading bacteria: Biodiversity, degradation mechanisms and environmental applications [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 37-49 (in Chinese)

猜你喜歡
污染環境研究
FMS與YBT相關性的實證研究
長期鍛煉創造體內抑癌環境
遼代千人邑研究述論
一種用于自主學習的虛擬仿真環境
孕期遠離容易致畸的環境
視錯覺在平面設計中的應用與研究
科技傳播(2019年22期)2020-01-14 03:06:54
EMA伺服控制系統研究
堅決打好污染防治攻堅戰
當代陜西(2019年7期)2019-04-25 00:22:18
環境
堅決打好污染防治攻堅戰
主站蜘蛛池模板: 国产精品视频第一专区| 99中文字幕亚洲一区二区| 午夜天堂视频| 国产精品一区二区国产主播| 无码'专区第一页| 曰AV在线无码| 亚洲欧美另类中文字幕| 丰满的熟女一区二区三区l| 国产福利一区在线| 国产欧美日韩综合一区在线播放| 久久精品人妻中文视频| 色综合五月婷婷| 亚洲va视频| 成人午夜久久| 亚洲国产高清精品线久久| 亚洲第一视频网站| 白浆免费视频国产精品视频| 日韩中文精品亚洲第三区| 97在线国产视频| 国产一区二区色淫影院| 国产精品xxx| 欧美国产成人在线| 亚洲成在人线av品善网好看| 91视频日本| 亚洲 欧美 中文 AⅤ在线视频| 中文字幕丝袜一区二区| 综合人妻久久一区二区精品 | 欧美日韩久久综合| 亚洲aⅴ天堂| 狼友av永久网站免费观看| 久久精品国产电影| 国产精品夜夜嗨视频免费视频| 91年精品国产福利线观看久久| 97久久精品人人| 国内精品一区二区在线观看| 成年免费在线观看| 91亚洲国产视频| 国产精品亚洲综合久久小说| 亚洲一区毛片| 欧亚日韩Av| 好吊妞欧美视频免费| 日本不卡在线| 国产h视频在线观看视频| 波多野结衣二区| 色吊丝av中文字幕| 久久亚洲国产最新网站| 国产精品片在线观看手机版| 91成人免费观看| 91尤物国产尤物福利在线| 日韩亚洲综合在线| 全部毛片免费看| 欧美性猛交一区二区三区| 日韩精品无码免费专网站| 免费jjzz在在线播放国产| 无码在线激情片| 国产麻豆精品手机在线观看| 老司机精品99在线播放| 亚洲欧州色色免费AV| 欧美国产综合视频| 一级毛片免费播放视频| 午夜不卡视频| a毛片在线免费观看| 91视频国产高清| 亚洲91在线精品| 日本黄色不卡视频| 国产成人调教在线视频| 国产精品13页| 精品少妇人妻无码久久| 日本亚洲欧美在线| 伊人久久大香线蕉综合影视| 手机成人午夜在线视频| 一本大道AV人久久综合| 自拍偷拍欧美日韩| 欧美成人综合在线| 国产不卡在线看| 激情爆乳一区二区| 国产18在线播放| 亚洲 欧美 偷自乱 图片| 三级欧美在线| 欧美区一区| 色哟哟国产精品| 亚洲视频在线青青|