黃亮,張經,吳瑩
1. 九江學院化學與環境工程學院 江西省生態化工工程技術中心,九江 332005 2. 華東師范大學 資源與環境科學學院,上海 200062 3. 華東師范大學 河口海岸國家重點實驗室,上海 200062
?
長江流域表層沉積物中多環芳烴分布特征及來源解析
黃亮1,2,*,張經3,吳瑩3
1. 九江學院化學與環境工程學院 江西省生態化工工程技術中心,九江 332005 2. 華東師范大學 資源與環境科學學院,上海 200062 3. 華東師范大學 河口海岸國家重點實驗室,上海 200062
長江流域沉積物多環芳烴分析表明,多環芳烴濃度總和(不包括苝)約為10.31~1 239 ng·g-1,與國內外其他區域相比,整體處于一個低至中等程度的污染水平。長江自上游至下游,沉積物中多環芳烴含量呈上升趨勢,與沿途各省多環芳烴的排放狀況相吻合。揚州(YZ)和湘江(XJ)采樣點沉積物中多環芳烴含量最高,污染最嚴重。根據多環芳烴的比值特征,長江流域沉積物中多環芳烴主要受以煤、木材、油類的燃燒影響較大,還有部分來自油類的泄漏,極少量來自自然成因。
多環芳烴;長江;沉積物;分布;源解析
Received 26 November 2015 accepted 9 January 2016
多環芳烴(polycyclic aromatic hydrocarbons, PAHs)是指2個或2個以上苯環以稠環形式相連的化合物,是一類廣泛存在于環境中的持久污染物[1]。它主要來源于各種化石燃料、生物質燃料的不完全燃燒、天然火災、火山爆發、石油泄漏、植物及微生物的生物合成,以及沉積環境中的成巖作用過程中形成[1-4]。多環芳烴是一類強致癌劑和誘變劑,因而其在環境介質中的分布、遷移及生態風險已被廣泛研究[5-8]。
長江作為世界最長的河流之一,伴隨著經濟的深入發展,人文活動對長江的改造及影響不斷增加,導致水污染問題越來越突出,尤其是有機物污染呈惡化趨勢,比如多環芳烴。據估算,長江流經的沿途各省排放的多環芳烴通量約為9.3×103t·y-1,占到全國總量的三分之一[9-10]。因此在長江某些江段的水體、顆粒物及沉積物中均檢測出多環芳烴[11-13],但是在整個長江流域沉積物中多環芳烴的分布還未見報道。故此,本文選擇長江流域為研究區域,探討多環芳烴在該區域沉積物中的分布特征,并結合多環芳烴的分子標志物對其分布及污染來源進行初步分析。
1.1 樣品采集與前處理
長江流域表層沉積物樣品采自2009年9—10月長江流域考察中于河流中心處(遠離人類活動密集處,盡量減小人為影響)用抓斗采集表層沉積物,采樣站位覆蓋了長江干流(9個)和主要支流(11個)(圖1)。采集1~2 kg沉積物樣品后立即放入冰箱在-20 ℃下冷凍保存。回到實驗室后,放入烘箱中60 ℃下干燥。隨后將樣品中明顯的植物碎屑挑出,樣品研磨過100目篩,待進一步分析處理。
稱取20 g左右沉積物樣品,加入氘代三聯苯作回收率指示物,用二氯甲烷和甲醇(V:V,2:1)索式抽提48 h,燒瓶中事先加入活化銅片以去除樣品中的硫。提取液經濃縮、轉換溶劑,用去活化的硅膠層析柱(SiO2-10% H2O)分離凈化,加20 mL正己烷洗脫。洗脫液旋轉濃縮近干后,加入2 mL正戊烷后,再加入等體積N, N-二甲基甲酰胺(DMF)-5%H2O萃取,移取DMF層,共萃取2次;再在DMF中加入4 mL H2O后,用4 mL正己烷萃取2次收集PAHs,多環芳烴經濃縮后進行GC- MS分析。詳細步驟參見Mandalakis等的方法[14]進行。

圖1 長江流域采樣站位示意圖Fig. 1 The map of sampling stations in the Yangtze River from China
1.2 多環芳烴測定
定量測試由Aglient 6890氣相色譜配5973N質譜檢測器完成。進樣口溫度為290 ℃,無分流進樣,進樣量為1 μL,在DB-5MS毛細管柱(30 m×0.25 mm×0.25 μm)中分離。升溫程序為初始溫度為80 ℃,保持2 min,以6 ℃·min-1升到290 ℃,保持10 min。通過多環芳烴混合標準的保留時間鑒定譜峰。
以12個樣品為一個批次,每批次中加入質量控制樣品,包括空白樣品和空白加標實驗,所有空白樣品均未檢測到PAHs,并在所有樣品中加入氘代三聯苯作為回收率內標。加標空白除萘、苊、二氫苊及芴的回收率小于60%,其他PAHs的回收率在80%~110%之間,平行樣的相對偏差不超過10%,因此在本論文討論中的PAHs只包括菲(Phe)、蒽(An)、1-甲基菲(Mphe)、熒蒽(Fl)、芘(Py)、苯并[a]蒽(BaA)、屈(Chry)、苯并[b]熒蒽(BbF)、苯并[k]熒蒽(BkF)、苯并[e]芘(BeP)、苯并[a]芘(BaP)、苝(Pery)、茚并[1,2,3-cd]芘(Ip)、二苯并[a,h]蒽(DhA)、苯并[ghi]苝(BghiP),不包括低分子量的萘、苊、二氫苊及芴。
2.1 長江流域沉積物中PAHs含量與分布
圖2和表1顯示了多環芳烴(TPAH,不包括Pery在內的其余多環芳烴總和)在整個研究區域的變化狀況,其濃度范圍在10.31~1 239 ng·g-1之間,平均為(178.0±272.2) ng·g-1,這與許士奮等[15]的在長江南京段的研究(213.8~550.3 ng·g-1)接近,低于生物毒性影響實驗獲得的生物影響閥值低值(ERL=4 022 ng·g-1)[16]。其中,支流沉積物PAHs含量最高在XJ站,為512.1 ng·g-1;最低在GJ站,為10.31 ng·g-1。而干流含量最高在YZ站,為1 239 ng·g-1;最低在XLJ,為16.94 ng·g-1。從整體上看,長江自上游至下游,沉積物中多環芳烴含量呈上升趨勢,與流域內各省多環芳烴的排放狀況相吻合。如圖3所示,盡管在上游的四川省的多環芳烴排放量最高,但是其地域廣闊,致使其排放密度下降,對應的沉積物中PAHs也較低;而位于下游的各省市多環芳烴的排放量變化趨勢并不明顯,但是其面積相對狹小,以致排放密度呈上升趨勢,尤其是上海,排放密度最高[17]。相對發達的工業、交通,城市和工業區及其周邊區域的多環芳烴污染水平高于山區、遠郊區和農業用地[18]。比如,XJ站于污染嚴重的湘江[19],YZ站位于經濟發達的揚州,工業活動劇烈,因此這2個站位的PAHs含量較高。AQ站附近有大型的煉油廠,故PAHs含量亦相對較高(為460.7 ng·g-1)。GJ站位于經濟欠發達的地區江西省,PAHs含量較低。位于長江口的XLJ站,附近有裝卸沙石的碼頭,因此該站位的表層沉積物可能是來自運砂船只的泄漏,因而TPAH較低(29.07 ng·g-1),在此檢出高含量的苝(占總量的84.1%),由于高含量的苝主要源于有機質成巖作用[20],也證明該站的沉積物可能主要來自運砂船只的泄漏。

圖2 長江流域支流及干流沉積物中多環芳烴含量分布Fig. 2 Distribution of PAHs contents in sediments from main steam and tributary of the Yangtze River

圖3 長江流域各省PAHs的排放量及排放密度,數據引自[17]Fig. 3 PAHs emissions and density of emission in the provinces along the Yangtze River[17]

站位SamplingstationPheAnFlPyBaAChryBbFBkFBaPIPDhABghiPMpheBePPeryTPAHYLJ8.681.516.544.082.962.793.421.592.812.45n.d.2.812.982.572.1245.18HSH15.512.7122.0415.046.575.905.572.474.643.57n.d.4.592.414.502.5698.82NLJ5.560.243.032.030.681.893.161.031.830.71n.d.0.742.462.200.4426.53DDH11.412.5220.5512.339.959.409.384.977.576.210.464.973.067.132.71111.61MJ16.082.3913.732.605.075.905.092.394.313.570.084.222.605.192.2976.23NX20.572.5818.9311.9910.3314.582.830.9510.6313.956.8810.9520.3813.956.11163.72CSH12.131.817.935.333.604.565.752.303.573.720.134.383.104.602.9066.25FJ31.353.2018.1913.429.1818.2218.645.679.6910.651.4212.255.0718.014.42180.85JLJ12.591.536.014.342.764.084.351.642.672.750.003.823.003.944.6656.76JJ8.071.235.793.502.883.481.870.632.832.830.523.197.253.741.7249.63WJ31.123.2731.5521.4014.4418.6223.639.2314.8619.7510.4315.2115.6416.896.43249.04WZ16.642.459.025.834.696.028.333.184.935.59n.d.6.2913.686.6189.5897.94XJ85.5614.3961.435.6538.0050.6254.6713.742.042.3658.253.03101.622.0416.90512.11HH7.660.391.391.030.250.57n.d.n.d.0.260.000.000.343.440.763.4216.94HS5.550.443.252.270.630.980.810.360.490.43n.d.0.453.331.224.4720.86GJ4.590.200.690.440.300.18n.d.n.d.n.d.n.d.n.d.n.d.1.57n.d.3.8610.31AQ56.138.2245.9132.5323.7135.4846.9515.2226.3729.6114.1428.3048.2235.92100.44460.69WH11.322.397.655.204.234.487.012.924.644.600.005.8111.265.2917.3380.43YZ49.229.09136.89120.8999.66103.39173.4331.981.9550.22390.7918.5842.981.951.951238.85XLJ8.590.532.501.680.571.351.840.430.000.920.000.895.061.33136.3629.06
注:TPAH指不包含Pery的其余多環芳烴之和。
Note: TPAH stands for the total contents of all PAHs without Pery.

圖4 長江支流及干流沉積物中多環芳烴的環數分布Fig. 4 Distribution of rings of PAHs in sediments from main steam and tributary of the Yangtze River
從多環芳烴組成上看(如圖4所示),位于上游支流各站(包括YLJ、HSH、NLJ、DDH、CSH、FJ、JLJ和WJ)的PAHs的組成非常相似,主要以下列順序排列:四環>三環>五環>六環>苝。位于主流的各站位來說,NX、AQ和YZ三個站位的環數組成相似,以四環和五環為主,三環和六環較少;而JJ、WZ和HH等站位卻主要以三環、四環為主,其次為五環和六環。另外在WZ、XLJ和GJ這3個站位還含有高含量的苝。

圖5 長江支流及干流沉積物中Fl/(Fl+Py)與(a) An/(An+Phe);(b) BaA/(BaA+Chry);(c)IP/(IP+BghiP);(d) Mphe/Phe散點圖Fig. 5 Plot of Fl/(Fl+Py) v.s. (a) An/(An+Phe); (b) BaA/(BaA+Chry); (c)IP/(IP+BghiP); (d) Mphe/Phe in sediments from main steam and tributary of the Yangtze River
2.2 多環芳烴的來源
不同來源的PAHs其組成并不一致,同時PAHs的同分異構體具有類似的物理化學性質,它們進入環境后的分配和稀釋行為接近,因此常使用多環芳烴某些單體的比值來判斷其來源,比如:An/(Phe+An)、Fl/(Fl+Py)、BaA/(BaA+Chry)和IP/(IP+BghiP)[21-24]。甲基多環芳烴主要來自低溫燃燒及石油泄漏[25],因而有研究認為Mphe/Phe小于1及大于1分別代表燃燒源和石油源[24]。如圖5所示,研究區域的大多數站位的Mphe/Phe比值都小于1,在0.34~0.99之間,說明這些站位的PAHs主要以熱成因為主;NLJ、FJ、JLJ、XJ這些站位的比值都大于1,說明它們的PAHs可能混有油來源。所有站位的Fl/(Fl+Py)均大于0.5和IP/(IP+BghiP)大于0.2,說明該區域的PAHs主要來自木材、煤等及油類的燃燒[24]。少量站位,例如HH、FJ、XLJ、NLJ的BaA/(BaA+Chry)在0.2~0.35之間,顯示混合源的特征[24]。綜上所述,研究區域表層沉積物的PAHs主要來以源于煤、木材、油類的燃燒為主,還有部分來自油類的泄漏,極少量來自自然成因。這也符合Xu等[17]的研究,他們證實中國的多環芳烴主要來自生物質燃料、煤的燃燒,分別占到總量的60%和20%

表2 世界其他地區河流、湖泊及近岸沉積物中多環芳烴含量比較
2.3 與國內外其他地區沉積物中多環芳烴含量的比較
長江流域沉積物與國內外其他湖泊、河流、近岸沉積物中多環芳烴的比較見表2。本研究區域的多環芳烴與廈門西港(195~675 ng·g-1)[26]、閩江口(174~817 ng·g-1)[27]、安徽巢湖(116.0~2 832 ng·g-1)[28]等地處于一個水平,要高于淮河(淮南-蚌埠段)(5~78 ng·g-1)[29]、江蘇云龍湖(5~19 ng·g-1)[30]和臺州灣海域(85~168 ng·g-1)[29],但要遠遠低于一些高度工業化和城市化的河口和海岸帶地區,例如歐洲波羅的海(3~30 100 ng·g-1)[31]、美國紐約港(1 900~70 000 ng·g-1)[32]、新加波海岸(13 630~ 84 920 ng·g-1)[33]等。綜上所述長江流域的PAHs污染程度的國際對比處于一個低至中等程度的污染。
綜上可知:
(1)長江流域沉積物中多環芳烴處于一個低至中等程度的污染水平,TPAH在10.31~1 239 ng·g-1之間,且自上游至下游,其含量呈上升趨勢,這與流域內各省多環芳烴的排放狀況、具體站位的環境狀況有關。
(2)通過多環芳烴組成特征判斷,研究區域沉積物中多環芳烴的來源主要來以源于煤、木材、油類的燃燒為主,還有部分來自油類的泄漏,極少量來自自然成因。
(3)與國內外其他河流、湖泊及海灣沉積物多環芳烴含量相比,研究區域沉積物中多環芳烴處于低至中等污染水平。
[1] Youngblood W W, Blumer M. Polycyclic aromatic hydrocarbons in the environment: Homologous series in soils and recent marine sediments [J]. Geochimica et Cosmochimica Acta, 1975, 39(9): 1303-1314
[2] Wakeham S G, Schaffner C, Giger W. Polycyclic aromatic hydrocarbons in recent lake sediments-II. Compounds derived from biogenic precursors during early diagenesis [J]. Geochimica et Cosmochimica Acta, 1980, 44(3): 415-429
[3] Mcdonald J D, Zielinska B, Fujita E M, et al. Fine particle and gaseous emission rates from residential wood combustion [J]. Environmental Science and Technology, 2000, 34(11): 2080-2091
[4] Zou L Y, Zhang W, Atkiston S. The characterisation of polycyclic aromatic hydrocarbons emissions from burning of different firewood species in Australia [J]. Environmental Pollution, 2003, 124(2): 283-289
[5] 楊清書, 麥碧嫻, 羅孝俊, 等. 珠江澳門水域水柱多環芳烴初步研究[J]. 環境科學研究, 2004, 17(3): 28-33
Yang Q S, Mai B X, Luo X J, et al. Preliminary study of polycyclic aromatic hydrocarbons of water column in Macau coastal waters [J]. Research of Environmental Sciences, 2004, 17(3): 28-33 (in Chinese)
[6] 王超, 楊忠芳, 夏學齊, 等. 中國不同地區典型河流中多環芳烴分布特征研究[J]. 現代地質, 2012, 26: 400-406
Wang C, Yang Z F, Xia X Q, et al.Distribution and sources of PAHs in typical Chinese rivers [J]. Geoscience, 2012, 26: 400-406 (in Chinese)
[7] Melnyk A, Dettlaff A, Kuklińska K, et al. Concentration and sources of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in surface soil near a municipal solid waste (MSW) landfill [J]. Science of the Total Environment, 2015, 530-531: 18-27
[8] Lafontaine S, Schrlau J, Butler J, et al. Relative influence of trans-pacific and regional atmospheric transport of PAHs in the Pacific Northwest, U.S. [J]. Environmental Science and Technology, 2015, 49(23): 13807-13816, DOI: 10.1021/acs.est.5b00800.
[9] 張彥旭. 中國多環芳烴的排放、大氣遷移及肝癌風險[D]. 北京: 北京大學, 2010
Zhang Y X. Polycylic aromatic hydrocarbons in China: Emission, atmospheric transport and lung cancer risk [D]. Beijing: Beijing University, 2010 (in Chinese)
[10] Streets D G, Gupta S, Waldhoff S T, et al. Black carbon emissions in China [J]. Atmospheric Environment, 2001, 35(25): 4281-4296 (in Chinese)
[11] 馮承蓮, 夏星輝, 周追, 等. 長江武漢段水體中多環芳烴的分布及來源分析[J]. 環境科學學報, 2007, 27(11): 1900-1908
Feng C L, Xia X H, Zhou Z, et al. Distribution and sources of polycyclic aromatic hydrocarbons in the Wuhan section of the Yangtze River [J]. Acta Scientiae Circumstantiae, 2007, 27(11): 1900-1908 (in Chinese)
[12] 沈小明, 呂愛娟, 沈加林, 等. 長江口啟東--崇明島航道沉積物中多環芳烴分布來源及生態風險評價[J]. 巖礦測試, 2014(3): 374-380
Shen X M, Lv A J, Shen J L, et al. Distribution characteristics, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in waterway sediments from Qidong and Chongming Island of Yangtze River Estuary [J]. Rock and Mineral Analysis, 2014(3): 374-380 (in Chinese)
[13] 劉敏, 侯立軍, 鄒惠仙, 等. 長江口潮灘表層沉積物中多環芳烴分布特征[J]. 中國環境科學, 2001, 21(4): 343-346
Liu M, Hou L J, Zou H X, et al. Distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of tidal flats of the Yangtze Estuary [J]. China Environmental Science, 2001, 21(4): 343-346 (in Chinese)
[14] Mandalakis M, Zebühr Y, Gustafsson ?. Efficient isolation of polyaromatic fraction from aliphatic compounds in complex extracts using dimethylformamide-pentane partitionings [J]. Journal of Chromatography A, 2004, 1041(1-2): 111-117
[15] 許士奮, 蔣新, 王連生, 等. 長江和遼河沉積物中的多環芳烴類污染物[J]. 中國環境科學, 2000, 20(2): 128-131
Xu S F, Jiang X, Wang L S, et al. Polycyclic aromatic hydrocarbons (PAHs) pollutants in sediments of the Yangtse River and the Liaohe River [J]. China Environmental Science, 2000, 20(2): 128-131 (in Chinese)
[16] 占新華, 周立祥. 多環芳烴(PAHs)在土壤-植物系統中的環境行為[J]. 生態環境, 2003, 12(4): 487-492
Zhan X H, Zhou L X. Environmental behavior of PAHs in soil-plant system [J]. Ecology and Environment, 2003, 12(4): 487-492 (in Chinese)
[17] Xu S, Liu W, Tao S. Emission of polycyclic aromatic hydrocarbons in China [J]. Environmental Science and Technology, 2005, 40(3): 702-708
[18] Nadal M, Schuhmacher M, Domingo J L. Levels of PAHs in soil and vegetation samples from Tarragona County, Spain [J]. Environmental Pollution, 2004, 132(1): 1-11
[19] 呂殿青, 歐陽峣. 湘江流域生態環境狀況的分析評價[J]. 湖南商學院學報, 2011, 18(5): 55-60
Lv D Q, Ou Y R.Analysis and evaluation of ecological environment in Xiangjiang River valley [J]. Journal of Hunan Business College, 2011, 18(5): 55-60 (in Chinese)
[20] Baumard P, Budzinski H, Michon Q, et al. Origin and bioavailability of PAHs in the Mediterranean Sea from mussel and sediment records [J]. Estuarine, Coastal and Shelf Science, 1998, 47(1): 77-90
[21] Simoneit B R T. Application of molecular marker analysis to vehicular exhaust for source reconciliations [J]. International Journal of Environmental Analytical Chemistry, 1985, 22(3-4): 203-232
[22] Bin Abas M R, Simoneit B R T, Elias V, et al. Composition of higher molecular weight organic matter in smoke aerosol from biomass combustion in Amazonia [J]. Chemosphere, 1995, 30(5): 995-1015
[23] Soclo H H, Garrigues P, Ewald M. Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: Case studies in Cotonou (Benin) and Aquitaine (France) Areas [J]. Marine Pollution Bulletin, 2000, 40(5): 387-396
[24] Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition [J]. Organic Geochemistry, 2002, 33(4): 489-515
[25] Mai B X, Qi S H, Zeng E Y, et al. Distribution of polycyclic aromatic hydrocarbons in the Coastal Region off Macao, China: Assessment of input sources and transport pathways using compositional analysis [J]. Environmental Science and Technology, 2003, 37(21): 4855-4863
[26] Zhou J L, Hong H, Zhang Z, et al. Multi-phase distribution of organic micropollutants in Xiamen Harbour, China [J]. Water Research, 2000, 34(7): 2132-2150
[27] 袁東星, 楊東寧, 陳猛, 等. 廈門西港及閩江口表層沉積物中多環芳烴和有機氯污染物的含量及分布[J]. 環境科學學報, 2001, 21(1): 107-112
Yuan D X, Yang D N, Chen M, et al. Concentrations and distribution of polycyclic aromatic hydrocarbons and organo-chlorides in surface sediment of Xiamen Western Harbour and Minjiang Estuary [J]. Acta Scientiae Circumstantiae, 2001, 21(1): 107-112 (in Chinese)
[28] 寧怡, 柯用春, 鄧建才, 等. 巢湖表層沉積物中多環芳烴分布特征及來源[J]. 湖泊科學, 2012, 24(6): 891-898
Ning Y, Ke Y C, Deng J C, et al. Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in surface sediment in Lake Chaohu [J]. Journao of Lake Science, 2012, 24(6): 891-898 (in Chinese)
[29] 王慶, 丁毅, 李玉成, 等. 淮河淮南-蚌埠段沉積物中的多環芳烴污染性狀研究[J]. 宿州學院學報, 2007, 22(6): 103-106
Wang Q, Ding Y, Li Y C, et al. Study on pollution characteristics of PAHS in sediments from the Huainan and Bangbu sections of Huaihe River [J]. Journal of Shuzhou University, 2007, 22(6): 103-106 (in Chinese)
[30] 丁文文, 韋萍. 徐州市云龍湖沉積物中多環芳烴的污染研究[J]. 安徽農業科學, 2008, 35(34): 11197-11198
Ding W W, Wei P. Study on the pollution of polycyclic aromatic hydrocarbons in the sediment of Yunlong Lake in Xuzhou City [J]. Journal of Anhui Agricultural Science, 2008, 35(34): 11197-11198 (in Chinese)
[31] Baumard P, Budzinski H, Garrigues P , et al. Polycyclic aromatic hydrocarbons in recent sediments and mussels (Mytilus edulis) from the Western Baltic Sea: Occurrence, bioavailability and seasonal variations [J]. Marine Environmental Research, 1999, 47(1): 17-47
[32] Yan B, Abrajano T A, Bopp R F, et al. Combined application of δ13C and molecular ratios in sediment cores for PAH source apportionment in the New York/New Jersey harbor complex [J]. Organic Geochemistry, 2006, 37(6): 674-687
[33] Basheer C, Obbard J P, Lee H K. Persistent organic pollutants in Singapore's coastal marine environment: Part II, sediments [J]. Water Air and Soil Pollution, 2003, 149: 315-325
[34] Li G, Xia X, Yang Z, et al. Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River, China [J]. Environmental Pollution, 2006, 144(3): 985-993
◆
Distribution and Sources of Polycyclic Aromatic Hydrocarbons in Surface Sediments from the Yangtze River
Huang Liang1,2,*, Zhang Jing3, Wu Ying3
1. Jiangxi Province Engineering Research Center of Ecological Chemical Industry, College of Chemistry and Environmental Engineering, Jiujiang University, Jiujiang 332005, China 2. School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China 3. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
Polycyclic aromatic hydrocarbons (PAHs) were determined in surface sediments from the Yangtze River basin. Total PAH concentrations (TPAH, perylene not included) varied from 10.31 ng·g-1to 1 239 ng·g-1, indicating a moderate to low level when compared with samples from the other regions worldwide. Concentrations of TPAH in sediments increased from the upper to the lower reaches, suggesting its emission along the Yangtze River. PAHs contents in sediments from the two highly polluted stations of YZ (Yangzhou) and XJ (Xiangjiang) were highest. According to the PAH ratio index calculations, these PAH molecules were primarily derived from petroleum combustion, biomass combustion and coal burning, followed by oil spillage, and the contribution of the direct input from nature origin was quite minor.
PAHs; Yangtze River; sediment; distribution; source
10.7524/AJE.1673-5897.20151126006
國家自然科學基金(41076052)
黃亮(1978-), 男, 江西九江人, 講師, 在讀博士, 研究方向為環境地球化學,Email: huangliang2002@126.com
2015-11-26 錄用日期:2016-01-09
1673-5897(2016)2-568-07
X171.5
A
黃亮, 張經, 吳瑩. 長江流域表層沉積物中多環芳烴分布特征及來源解析[J]. 生態毒理學報,2016, 11(2): 566-572
Huang L, Zhang J, Wu Y. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments from the Yangtze River [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 566-572 (in Chinese)