連晶瑤,丁苗慧,秦國慧,張 毅,王純耀*
(1.鄭州大學第一附屬醫院,鄭州 450052; 2.鄭州大學臨床醫學系,鄭州 450052; 3.鄭州大學,鄭州 450052)
研究進展
免疫系統人源化小鼠模型的研究進展
連晶瑤1,3,丁苗慧2,秦國慧1,張 毅1,王純耀1,3*
(1.鄭州大學第一附屬醫院,鄭州 450052; 2.鄭州大學臨床醫學系,鄭州 450052; 3.鄭州大學,鄭州 450052)
動物模型是生物醫學科學研究中所建立的具有人類模擬性表現的動物材料,作為實驗假說和臨床假說的實驗基礎,可以縮短研究時間,觀察疾病的發生、發展或預防與治療的全過程,并可在人為控制條件下進行各種實驗研究,對各種疾病的相關機制研究有著重要意義。人類的生物醫學研究主要受限于生物體復雜性,為了克服這個限制,基于可接受異種移植物的嚴重聯合免疫缺陷(SCID)或重組激活基因(Ragnull)無效小鼠的免疫缺陷特征開發人源化小鼠模型,這些具有人體免疫力的小鼠模型已被廣泛用于研究人類免疫生物學的基本原理以及人類疾病的復雜病理的潛在機制。這種方法是促進醫學科學發展的重要途徑之一,具有實用性和前瞻性。本文將對人源化小鼠模型的應用及研究進展進行綜述。
動物模型;人源化小鼠;治療;進展
人源化小鼠應用于研究人類免疫細胞、人類自身免疫性疾病、病毒感染、移植生物學和腫瘤生物學的發展和應用。通過移植成熟的人類免疫細胞、胎兒人類胸腺、骨髓、肝組織等,構建具有人體免疫力的小鼠模型。具有人源化免疫系統的動物模型將顯著促進我們對人類免疫生物學和免疫相關疾病如自身免疫性疾病、病毒感染以及腫瘤和移植排斥的認識。這些動物模型是研究人淋巴細胞生物學和免疫應答的重要研究工具[1,2]。現已經有探究人源化小鼠人源細胞的檢測方法[3]。人源化小鼠由人類細胞、組織、器官甚至人類基因構成的小鼠[4],包括用人的肺、腎、胰腺、胃、肝、卵巢、子宮內膜、神經和皮膚組織移植的模型[5-8]。嚴重聯合免疫缺陷(SCID)或重組激活基因(Rag)小鼠缺乏T和B細胞,最初被用作重建人體免疫的接受者[9]。最近,越來越多的基因修飾的SCID或Rag小鼠模型被使用,包括SCID[10],NOD/SCID[11],Ragnull[12]和NOD/LtSz-Rag1nullPfpnull[13]等,這些小鼠是先天免疫缺陷的。人源化小鼠模型作為研究人類疾病的活體模型,在闡明發病機制、藥物篩選等方面具有巨大的優勢和廣泛的應用前景[14]。本綜述主要介紹免疫系統人源化小鼠模型的現狀及研究進展。
1.1接種小鼠選擇用于移植異種人造血和免疫細胞
為了提高人類免疫細胞或組織的移植效率,要求不同的條件治療方案和移植手段,包括宿主先天免疫細胞的清除以及植入成熟的人類免疫細胞、胎兒胸腺、肝組織、骨髓和CD34+血液干細胞(HSC)[15]等的小鼠模型的構建。SCID小鼠缺乏T細胞受體和免疫球蛋白基因的重排,導致T細胞和B細胞的缺失[16],SCID小鼠中功能性T和B細胞的缺失有助于同種異體移植物或異種移植物的接受,沒有嚴重的排斥反應[17]。Rag1或Rag2通過產生DNA雙鏈斷裂引發TCR和免疫球蛋白基因的VDJ重排,因此小鼠中的純合突變體導致不能產生成熟的T和B細胞,導致SCID樣表型[18]。具有Rag1和穿孔素基因的靶向突變的NOD小鼠,命名為NOD/LtSz-Rag1nullPfpnull小鼠,其缺乏成熟的T、B和NK細胞[19]。現在越來越多的科學家來開發具有更多缺陷先天免疫修飾的SCID小鼠或其他人源化小鼠模型。NOD/Shi-SCID小鼠也具有類似于NOD/LtSz-SCID小鼠的嚴重免疫功能障礙[20]。NOD/LtSz-SCID或NOD/Shi-SCID小鼠的先天免疫缺陷可能很好地解釋了體內人異種移植物存活增加的問題[21]。CD47可以通過與巨噬細胞上表達的信號調節蛋白(SIRP)反應,有效地保護靶細胞免受巨噬細胞吞噬作用[22]。
1.2敲除受體小鼠中的先天免疫細胞
SCID或Ragnull小鼠的先天免疫力成為限制人免疫細胞重建的主要因素。在受體小鼠中敲除NK細胞、單核細胞和巨噬細胞等某些亞群的方法可以改善人類HSCs或免疫細胞移植[23,24]。CD122抗體或IL-2R抗體等用于敲除NK細胞,脂質體包封的二氯亞甲基雙膦酸鹽敲除巨噬細胞[25],這會嚴重影響小鼠嗜中性粒細胞[26]和粒細胞[27],這可能控制SCID或Ragnull小鼠對人類移植物的天然免疫應答,并與人類移植物的增加顯著相關。
1.3人類生長因子的影響
人類免疫細胞在異種免疫缺陷型受體小鼠中的低移植效率可能通過提供人類生長因子而有所改善。在小鼠中,CD4和CD8單陽性胸腺細胞的成熟需要TNF-α的誘導[28]。T細胞的發育、增殖和存活對上皮衍生的IL-7具有重要的依賴性[29],人Fc-IL7融合蛋白的使用大大提高了NOD/SCID小鼠的脾臟和外周血中人T細胞的存活[30]。IL-15對造血功能有促進作用,包括T細胞的增殖,B細胞的成熟和NK細胞的發育[31,32]。rhIL-15可以改善轉染人類PBL后NOD/SCID小鼠人T細胞的移植和重建[33]。此外,IL-12或IL-18的使用增強了小鼠中人CD4+和CD8+T細胞的移植[34]。在用人PBL或骨髓細胞(BMC)接種的SCID小鼠中,注射重組人生長激素(rhGH)或重組人催乳素(rhPRL)強烈促進胸腺和脾臟中的人T細胞移植,IgG/M血清水平增強[35]。
1.4通過輻射或化學藥劑為供體細胞制造“空間”
盡管通過NK細胞或巨噬細胞的抗體進行預處理可以清除NOD/SCID小鼠的殘留免疫力,但是可能需要亞致死輻射或化學試劑的制備方案來制造用于接種異種人類HSCs或免疫細胞的“空間”。這些預處理可能導致生長因子和化學引誘物濃度的增加,并為受體小鼠中人HSC和免疫細胞的發育和再輻射保留一定量的空間,一些免疫抑制劑和烷化劑已經顯示出與輻射相似的效果。例如,與3.5 Gy照射相比,單次劑量(35 mg/kg)的Busilvex能夠進行人類細胞的等同移植[36]。通常,人類HSC移植在NOD/SCID小鼠中需要2~3 Gy預輻射,并且人類免疫細胞可以在受照射的受體中很好的生存[37]。
1.5直接植入成熟的人免疫細胞獲得人源化小鼠
通過用針對受體小鼠NK細胞、巨噬細胞或粒細胞的抗體處理,人免疫細胞的移植顯著改善[38]。與SCID小鼠相比,用人PBLs腹膜內移植的Rag2null小鼠顯示有限的人類移植率和較低水平的人免疫球蛋白[39]。600Gy照射可以提高Rag2null小鼠人類植入的效率[40]。為了提供適當的微環境,移植到SCID小鼠中,包含必需的細胞組分有T細胞、B細胞和抗原呈遞細胞(APC)。在這些小鼠中,人免疫缺陷病毒(HIV)可以正常復制[41],分化成產生人IgM或IgG。分析抗原特異性細胞免疫應答是非常困難的,人T和B細胞介導的這種異種反應不僅引起了致命的移植物抗宿主病(GVHD)[42],而且嚴重限制了人類PBL對外源性抗原的反應能力[43]。因此,這種方法在生物醫學研究中的應用很有限。當人類臍帶血CD34+細胞注射到NOD/SCID胎兒中時,人類免疫細胞在胎兒小鼠環境中不能有效地自我更新和分化[44]。
1.6移植人類胸腺和HSC獲得人源化小鼠
建立人源化小鼠模型的另一個重要方法是在SCID小鼠的腎膠囊下移植胎兒人胸腺和肝組織,導致良好的血管胸腺樣器官[45]。觀察到來自胎兒人肝組織移植物的人類HSCs遷移到胸腺移植物中[46]。這些人源化小鼠為體內研究人體免疫功能提供了強大的模型。NOD/SCID或Rag2null小鼠沒有T和B細胞,沒有NK活性,并且缺失DC功能[47],因此是比較好的小鼠模型。由于人類抗小鼠異種免疫反應引起的GVHD的高發生率或可能性,直接移植高劑量的成熟人類T細胞和其他免疫細胞可能不是理想的選擇。因此,在免疫缺陷小鼠中植入胎兒人胸腺組織和HSC以重建人類免疫可能是一種最佳方法。胎兒人胸腺或肝組織和CD34+HSCs的共移植策略可以維持人類免疫細胞多譜系的發育,包括T細胞,B細胞和DC,提供更強大的適應性和先天免疫力。
人源化小鼠廣泛應用于人類HSCs的自我更新和多能分化能力的研究,以及人類對病毒感染,腫瘤和移植的免疫力。人臍帶血(UCB)、骨髓和外周血被用作移植人HSCs的來源。從人UCB移植CD34+細胞與來自骨髓或外周血的CD34+細胞相比,NOD/SCID小鼠的移植水平更高[48]。人類CD34+群體可以分為兩個獨特特征的亞群(CD34+CD38+和CD34+CD38-)。CD34+CD38+細胞早期重新產生,而CD34+CD38-細胞的增殖在晚期代表了更原始的群體和更高的T細胞前體[49]。人類CD34+Lin-Thy-1+祖細胞的群體可以重新填充胸腺移植物。此外,人類CD34+細胞或CD34+Lin-Thy-1+CD10+群體在SCID小鼠中產生T、B、NK和DC群體。當將人CD34+細胞移植到NOD/SCID/IL2R無效小鼠中時,重構免疫細胞的重組,包括人T細胞、B細胞、單核細胞、巨噬細胞和DC[50,51]。人源化小鼠中的人DC在發育,表現和功能上類似于人類發現的DC亞群[52]。自身免疫性疾病從具有器官特異性和多系統自身免疫疾病的患者獲得的人PBL在SCID小鼠中存活數月,并產生具有與供體相同特異性的IgG和自身抗體[53]。因此,這提供了一種可能的方法來研究人體自身免疫性疾病在體內模型中的發病機制和效應階段。這些結果表明人源化小鼠可以作為抗體介導的人自身免疫性皮膚病的模型。
2.1病毒感染
人造模型被用于研究病毒與人類免疫系統之間的相互作用,并評估疫苗和治療劑對人類病毒等的作用。艾滋病毒感染主要限于體外或臨床研究,人源化小鼠已廣泛用于研究HIV發病機制和體內治療[54,55]。在接種人類PBL的SCID小鼠中,HIV感染被限制在短時間內,因為CD4+T細胞迅速耗盡,缺乏補充來源[56]。在將未經治療的HIV感染患者的PBLs誘導轉移到NOD/SCID小鼠后,觀察到強烈的HIV特異性抗體反應[57]。在接種人胸腺和肝組織的人源化小鼠中,艾滋病毒感染對于一些胸腺CD3-CD4+CD8-T細胞的細胞呈現出先天性趨向[58]。在移植人類CD34+細胞后,在NOD/SCID/IL-2小鼠的脾臟、骨髓或胸腺中檢測到感染CCR5和CXCR4-嗜性HIV-1分離物后的長期病毒血癥。CXCR4-嗜性HIV病毒感染所有淋巴器官,而CCR5-嗜性HIV病毒感染主要限于胸外組織。兩種病毒株都導致人類長期淋巴器官傳播感染與HIV感染密切相似。已經開發了人源化小鼠模型,用于對HIV抗病毒化合物進行臨床前評估,包括疊氮胸苷[59],雙脫氧肌苷,雙脫氧胞嘧啶,奈韋拉平,蛋白酶抑制劑[60]。SARS病毒導致了亞洲的致命疫情[61]。人PBLs構建的人源化小鼠被用于研究針對SARS-CoV的新型候選疫苗。SARS DNA疫苗誘導特異于SARS抗原的人細胞毒性T淋巴細胞和針對SARS-CoV的人中和抗體[62],證明血管緊張素轉換酶2是SARS-CoV的功能受體[63]。對登革熱病毒發病機理和免疫力的理解的一個主要限制是缺乏理想的人源化動物模型。用人臍帶血造血祖細胞或胎兒肝衍生的CD34+細胞移植的照射的NOD/SCID小鼠在生理環境中實現登革熱病毒感染的復制。發現這些模型易感染登革病毒感染,發現典型的發燒和血小板減少癥狀,并用于評估登革病毒的發病機制[64]。此外,人源化小鼠也已經用于研究EBV[65],巨細胞病毒(CMV)[66]和流感感染[67]的病理和治療等。
2.2對同種異體移植物或異種移植物的免疫應答或耐受性
在接種人胸腺和肝組織或PBL的SCID小鼠中移植同種異體HLA錯配的胎兒胰腺導致人單核細胞浸潤胰腺和隨后的排斥反應[68]。人類T細胞對SCID小鼠中同種異體供體的皮膚移植物的排斥負責[69,70]。像人類皮膚移植一樣,皮膚微血管被破壞,皮膚壞死[71]。人類PBL移植的SCID小鼠被建立為延遲型超敏反應(DTH)的模型[72]。從供體受體的腎移植受者分離出的適應性CD4+CD25+Treg細胞介導人源化SCID小鼠中供體特異性DTH的抑制[73]。從供體A和來自供體B的胎兒胸腺移植人胎肝的SCID小鼠開發了混合嵌合人胸腺[74]。在該模型中,與供體A反應的人T細胞通過在胸腺中的選擇被克隆缺失,而與供體B的同種異體胸腺上皮細胞相互作用的T細胞可能對供體B有潛在的響應[75]。人體小鼠模型用于研究體內異種豬移植物的免疫應答[76]。用胎兒豬胸腺和人肝組織移植的SCID小鼠中的豬胸腺移植物支持由人類胎兒肝細胞提供的造血前體的多克隆功能性人T細胞的正常發育[77]。這些人類T細胞對供體豬抗原具有特異性的耐受性,但對非供體豬異種抗原和同種異體抗原反應正常。外源IL-2沒有消除耐受性,表明中樞克隆缺失而不是無反應是可能的耐受機制[77]。最近,研究結果表明,人類功能性CD4+CD25+Foxp3+Treg細胞可以在NOD/SCID小鼠的異種豬胸腺移植物中發育。嵌合體由人胸腺肝組織和豬HSC在SCID小鼠中構建[78]。在這種嵌合體中發育的人類T細胞顯示出對豬供體的特異性無反應性,因為它缺乏豬血液細胞和抗供體豬反應的排斥,以及供體豬白細胞抗原(SLA)匹配皮膚的接受移植物,而混合嵌合小鼠中的人T細胞拒絕了第三方豬皮膚移植物,并測定對第三方豬和同種異體人類抗原作出反應[78]。造血嵌合體誘導供體細胞T細胞耐受性的能力主要是由成熟供體反應性胸腺細胞的胸腺內克隆缺失引起的[79]。
2.3抗腫瘤免疫反應
惡性腫瘤可以無限制地生長,逃避人類免疫監視。SCID或Rag小鼠可以成功地植入異種人類腫瘤,包括各種各樣的實體人類腫瘤和血液腫瘤[80],其中人類腫瘤生物學、生長、血管發生和轉移已被評估。在免疫缺陷小鼠中成功移植人類腫瘤和人類免疫細胞的能力已經促成了人源化小鼠模型的開發和使用,以評估抗腫瘤治療。事實上,理想的模型是具有完整人類免疫系統的人源化小鼠,這將允許在完整的人免疫微環境的背景下評估腫瘤免疫生物學的機制。人源化小鼠可用于評估抑制人腫瘤生長的治療方法,包括使用血管生成抑制劑[81]、基于細胞的療法[82]、人源化抗體[83]、傳統的免疫抑制和免疫治療方案[84]和腫瘤生長抑制劑[85]。人源化小鼠提供了評估人細胞因子和趨化因子的機會,其增強人白細胞的先天和適應性抗腫瘤免疫應答,從而提供臨床相關的模型。
人源化小鼠模型的建立為疾病的病因學、發展過程和治療研究提供了極大的幫助,尤其是近來分子生物學技術的提高及在人源化小鼠模型中的應用,為各種疾病有關基因研究提供了依據,為進一步研究疾病發生機制及靶向治療提供了廣闊的前景。隨著研究的深入以及各種技術的進步,人們將建立更為完善的人源化小鼠模型,在疾病研究及治療方面取得更大的突破。
[1] Kenney LL, Shultz LD, Greiner DL, et al. Humanized mouse models for transplant immunology[J]. Am J Transplant, 2016, 16(2):389-397.
[2] Safinia N, Becker PD, Vaikunthanathan T, et al. Humanized mice as preclinical models in transplantation[J]. Springer New York, 2016, 1371:177-179.
[3] 陳煒, 馮娟, 施海霞,等. 人源化小鼠人源細胞檢測方法[J]. 中國比較醫學雜志, 2010, 20(7):63-66.
[4] Aubard Y. Ovarian tissue xenografting[J]. Eur J Obstet Gynecol Reprod Biol,2003, 108(1): 14-18.
[5] Maltaris T, Koelbl H, Fischl F, et al. Xenotransplantation of human ovarian tissue pieces in gonadotropin-stimulated SCID mice: the effect of ovariectomy[J]. Anticancer Res,2006, 26(6B): 4171-4176.
[6] Matsuura-Sawada R, Murakami T, Ozawa Y, et al. Reproduction of menstrual changes in transplanted human endometrial tissue in immunodeficient mice[J]. Hum Reprod,2005, 20(6): 1477-1484.
[7] Masuda H, Maruyama T, Hiratsu E, et al. Noninvasive and real-time assessment of reconstructed functional human endometrium in NOD/SCID/gamma c(null) immunodeficient mice[J]. Proc Natl Acad Sci U S A,2007, 104(6): 1925-1930.
[8] McCune JM, Namikawa R, Kaneshima H,et al. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function[J]. Science,1988, 241(4873): 1632-1639.
[9] Mosier DE, Stell KL, Gulizia RJ, et al. Homozygous SCID/SCID; beige/beige mice have low levels of spontaneous or neonatal T cell-induced B cell generation[J]. J Exp Med,1993, 177(1): 191-194.
[10] Ito M, Hiramatsu H, Kobayashi K, et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells[J]. Blood,2002, 100(9): 3175-3182.
[11] Chen J, Shinkai Y, Young F, et al. Probing immune functions in RAG-deficient mice[J]. Curr Opin Immunol,1994, 6(2): 313-319.
[12] Shultz LD, Banuelos S, Lyons B, et al. NOD/LtSz-Rag1nullPfpnullmice: a new model system with increased levels of human peripheral leukocyte and hematopoietic stem-cell engraftment[J]. Transplantation,2003, 76(7): 1036-1042.
[13] Ito R, Takahashi T, Katano I, et al. Current advances in humanized mouse models.[J]. Immunol, 2012, 9(3):208-214.
[14] Lan P, Tonomura N, Shimizu A, et al. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+cell transplantation[J]. Blood,2006, 108(2): 487-492
[15] Kirchgessner CU, Patil CK, Evans JW, et al. DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect[J]. Science,1995, 267(5201): 1178-1183.
[16] Mosier DE, Gulizia RJ, Baird SM, et al. Transfer of a functional human immune system to mice with severe combined immunodeficiency[J]. Nature,1988, 335(6187): 256-259.
[17] Chen J, Shinkai Y, Young F, et al. Probing immune functions in RAG-deficient mice[J]. Curr Opin Immunol,1994, 6(2): 313-319.
[18] Shultz LD, Banuelos S, Lyons B, et al. NOD/LtSz-Rag1nullPfpnullmice: a new model system with increased levels of human peripheral leukocyte and hematopoietic stem-cell engraftment[J]. Transplantation,2003, 76(7): 1036-1042.
[19] Koyanagi Y, Tanaka Y, Tanaka R, et al. High levels of viremia in hu-PBL-NOD-scid mice with HIV-1 infection[J]. Leukemia,1997, 3: 109-112.
[20] Greiner DL, Shultz LD, Yates J, et al. Improved engraftment of human spleen cells in NOD/LtSz-SCID/SCID mice as compared with C.B-17-SCID/SCID mice[J]. Am J Pathol,1995, 146(4): 888-902.
[21] Wang H, Madariaga ML, Wang S, et al. Lack of CD47 on nonhematopoietic cells induces split macrophage tolerance to CD47nullcells[J]. Proc Natl Acad Sci U S A,2007, 104(34): 13744-13749.
[22] Kerre TC, De Smet G, De Smedt M, et al. Adapted NOD/SCID model supports development of phenotypically and functionally mature T cells from human umbilical cord blood CD34+cells[J]. Blood,2002, 99(5): 1620-1626.
[23] Yoshino H, Ueda T, Kawahata M, et al. Natural killer cell depletion by anti-asialo GM1 antiserum treatment enhances human hematopoietic stem cell engraftment in NOD/Shi-scidmice[J]. Bone Marrow Transplant,2000, 26(11): 1211-1216.
[24] Legrand N, Weijer K, Spits H. Experimental models to study development and function of the human immune system in vivo[J]. J Immunol,2006, 176(4): 2053-2058.
[25] Santini SM, Rizza P, Logozzi MA, et al. The SCID mouse reaction to human peripheral blood mononuclear leukocyte engraftment. Neutrophil recruitment induced expression of a wide spectrum of murine cytokines and mouse leukopoiesis, including thymic differentiation[J]. Transplantation,1995, 60(11): 1306-1314.
[26] Santini SM, Spada M, Parlato S, et al. Treatment of severe combined immunodeficiency mice with anti-murine granulocyte monoclonal antibody improves human leukocyte xenotransplantation[J]. Transplantation,1998, 65(3): 416-420.
[27] Zuniga-Pflucker JC, Di J, Lenardo MJ. Requirement for TNF-α and IL-1 alpha in fetal thymocyte commitment and differentiation[J]. Science,1995, 268(5219): 1906-1909.
[28] El Kassar N, Lucas PJ, Klug DB, et al. A dose effect of IL-7 on thymocyte development[J]. Blood,2004, 104(5): 1419-1427.
[29] Shultz LD, Lyons BL, Burzenski LM, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scidIL2Rγnullmice engrafted with mobilized human hemopoietic stem cells[J]. J Immunol,2005, 174(10): 6477-6489.
[30] Bykovskaia SN, Buffo M, Zhang H, et al. The generation of human dendritic and NK cells from hemopoietic progenitors induced by interleukin-15[J]. J Leukoc Biol,1999, 66(4): 659-666.
[31] Lodolce JP, Boone DL, Chai S, et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation[J]. Immunity,1998, 9(5): 669-676.
[32] Sun A, Wei H, Sun R, et al. Human interleukin-15 improves engraftment of human T cells in NOD-SCID mice[J]. Clin Vaccine Immunol,2006, 13(2): 227-234.
[33] Senpuku H, Asano T, Matin K, et al. Effects of human interleukin-18 and inter-leukin-12 treatment on human lymphocyte engraftment in NOD-scid mouse[J]. Immunology,2002, 107(2): 232-242.
[34] Sun R, Zhang J, Zhang C, et al. Human prolactin improves engraftment and reconstitution of human peripheral blood lymphocytes in SCID mice[J]. Cell Mol Immunol,2004, 1(2): 129-136.
[35] Robert-Richard E, Ged C, Ortet J, et al. Human cell engraftment after busulfan or irradiation conditioning of NOD/SCID mice[J]. Haematologica,2006, 91(10): 1384.
[36] Nervi B, Rettig MP, Ritchey JK, et al. Factors affecting human T cell engraftment, trafficking, and associated xenogeneic graft-vs-host disease in NOD/SCID beta2mnullmice[J]. Exp Hematol,2007, 35(12): 1823-1838.
[37] Tournoy KG, Depraetere S, Pauwels RA, et al. Mouse strain and conditioning regimen determine survival and function of human leucocytes in immunodeficient mice[J]. Clin Exp Immunol,2000, 119(1): 231-239.
[38] Steinsvik TE, Gaarder PI, Aaberge IS, et al. Engraftment and humoral immunity in SCID and RAG-2-deficient mice transplanted with human peripheral blood lymphocytes[J]. Scand J Immunol,1995, 42(6): 607-616.
[39] Friedman T, Shimizu A, Smith RN, et al. Human CD4+T cells mediate rejection of porcine xenografts[J]. J Immunol,1999, 162(9): 5256-5262.
[40] Kaneshima H, Shih CC, Namikawa R, et al. Human immunodeficiency virus infection of human lymph nodes in the SCID-hu mouse[J]. Proc Natl Acad Sci U S A,1991, 88(10): 4523-4527.
[41] Sandhu J, Shpitz B, Gallinger S, et al. Human primary immune response in SCID mice engrafted with human peripheral blood lymphocytes[J]. J Immunol,1994, 152(8): 3806-3813.
[42] Bankert RB, Umemoto T, Sugiyama Y, et al. Human lung tumors, patients’ peripheral blood lymphocytes and tumor infiltrating lymphocytes propagated in SCID mice[J]. Curr Top Microbiol Immunol,1989, 152: 201-210.
[43] Schoeberlein A, Schatt S, Troeger C, et al. Engraftment kinetics of human cord blood and murine fetal liver stem cells following in utero transplantation into immunodeficient mice[J]. Stem Cells Dev,2004, 13(6): 677-684.
[44] Namikawa R, Weilbaecher KN, Kaneshima H, et al. Long- term human hematopoiesis in the SCID-hu mouse[J]. J Exp Med,1990, 172(4): 1055-1063.
[45] Morrison SJ, Uchida N, Weissman IL. The biology of hematopoietic stem cells[J]. Annu Rev Cell Dev Biol,1995, 11: 35-71.
[46] Colucci F, Soudais C, Rosmaraki E, et al. Dissecting NK cell development using a novel a lymphoid mouse model: investigating the role of the c-abl proto-oncogene in murine NK cell differentiation[J]. J Immunol,1999, 162(5): 2761-2765.
[47] Noort WA, Wilpshaar J, Hertogh CD, et al. Similar myeloid recovery despite superior overall engraftment in NOD/SCID mice after transplantation of human CD34+cells from umbilical cord blood as compared to adult sources[J]. Bone Marrow Transplant,2001, 28(2): 163-171.
[48] Hogan CJ, Shpall EJ, Keller G. Differential long-term and multilineage engraftment potential from subfractions of human CD34+cord blood cells transplanted into NOD/SCID mice[J]. Proc Natl Acad Sci U S A,2002, 99(1): 413-418.
[49] Melkus MW, Estes JD, Padgett-Thomas A, et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1[J]. Nat Med,2006, 12(11): 1316-1322.
[50] Ishikawa F, Yasukawa M, Lyons B, et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chainnullmice[J]. Blood,2005, 106(5): 1565-1573.
[51] Cravens PD, Melkus MW, Padgett-Thomas A, et al. Development and activation of human dendritic cells in vivo in a xenograft model of human hematopoiesis[J]. Stem Cells,2005, 23(2): 264-278.
[52] Elkon KB, Ashany D. Autoimmunity versus allo- and xeno-reactivity in SCID mice[J]. Int Rev Immunol,1994, 11(4): 283-293.
[53] Kollmann TR, Pettoello-Mantovani M, Katopodis NF, et al. Inhibition of acute in vivo human immunodeficiency virus infection by human interleukin 10 treatment of SCID mice implanted with human fetal thymus and liver[J]. Proc Natl Acad Sci USA,1996, 93(7): 3126-3131.
[54] Withers-Ward ES, Amado RG, Koka PS, et al. Transient renewal of thymopoiesis in HIV-infected human thymic implants following antiviral therapy[J]. Nat Med,1997, 3(10): 1102-1109.
[55] Mosier DE, Gulizia RJ, MacIsaac PD, et al. Rapid loss of CD4+T cells in human-PBL-SCID mice by noncytopathic HIV isolates[J]. Science,1993, 260(5108): 689-692.
[56] Steyaert S, Verhoye L, Beirnaert E, et al. The intraspleen huPBL NOD/SCID model to study the human HIV-specific antibody response selected in the course of natural infection[J]. J Immunol Methods,2007, 320(1-2): 49-57.
[57] Su L, Kaneshima H, Bonyhadi M, et al. HIV-1-induced thymocyte depletion is associated with indirect cytopathogenicity and infection of progenitor cells in vivo[J]. Immunity,1995, 2(1): 25-36.
[58] McCune JM, Namikawa R, Shih CC, et al. Suppression of HIV infection in AZT-treated SCID-hu mice[J]. Science,1990, 247(4942): 564-566.
[59] Rabin L, Hincenbergs M, Moreno MB, et al. Use of standardized SCID-hu Thy/Liv mouse model for preclinical efficacy testing of anti-human immunodeficiency virus type 1 compounds[J]. Antimicrob Agents Chemother,1996, 40(3): 755-762.
[60] Drosten C, Gunther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome[J]. N Engl J Med,2003, 348(20): 1967-1976.
[61] Okada M, Okuno Y, Hashimoto S, et al. Development of vaccines and passive immunotherapy against SARS corona virus using SCID-PBL/hu mouse models[J]. Vaccine,2007, 25(16): 3038-3040.
[62] Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus[J]. Nature,2003, 426(6965): 450-454.
[63] Bente DA, Melkus MW, Garcia JV, et al. Dengue fever in humanized NOD/SCID mice[J]. J Virol,2005, 79(21): 13797-13799.
[64] Lim WH, Kireta S, Russ GR, et al. Human plasmacytoid dendritic cells regulate immune responses to Epstein-Barr virus (EBV) infection and delay EBV-related mortality in humanized NOD-SCID mice[J]. Blood,2007, 109(3): 1043-1050.
[65] Moffat JF, Stein MD, Kaneshima H, et al. Tropism of varicella-zoster virus for human CD4+and CD8+T lymphocytes and epidermal cells in SCID-hu mice[J]. J Virol,1995, 69(69): 5236-5242.
[66] Palucka AK, Gatlin J, Blanck JP, et al. Human dendritic cell subsets in NOD/SCID mice engrafted with CD34+hematopoietic progenitors[J]. Blood,2003, 102(9): 3302-3310.
[67] Banuelos SJ, Shultz LD, Greiner DL, et al. Rejection of human islets and human HLA-A2.1 transgenic mouse islets by alloreactive human lymphocytes in immunodeficient NOD-scidand NOD-Rag1nullPrf1nullmice[J]. Clin Immunol,2004, 112(3): 273-283.
[68] Pober JS, Bothwell AL, Lorber MI, et al. Immunopathology of human T cell responses to skin, artery and endothelial cell grafts in the human peripheral blood lymphocyte/severe combined immunodeficient mouse[J]. Springer Semin Immunopathol,2003, 25(2): 167-180.
[69] Rayner D, Nelson R, Murray AG. Noncytolytic human lymphocytes injure dermal microvessels in the huPBL-SCID skin graft model[J]. Hum Immunol,2001, 62(6): 598-606.
[70] Murray AG, Petzelbauer P, Hughes CC, et al. Human T-cell-mediated destruction of allogeneic dermal microvessels in a severe combined immunodeficient mouse[J]. Proc Natl Acad Sci U S A,1994, 91(19): 9146-9150.
[71] Petzelbauer P, Groger M, Kunstfeld R, et al. Human delayed-type hypersensitivity reaction in a SCID mouse engrafted with human T cells and autologous skin[J]. J Invest Dermatol,1996, 107(4): 576-581.
[72] Xu Q, Lee J, Jankowska-Gan E, Schultz J, et al. Human CD4+CD25lowadaptive T regulatory cells suppress delayed-type hypersensitivity during transplant tolerance[J]. J Immunol,2007, 178(6): 3983-3995.
[73] Vandekerckhove BA, Namikawa R, Bacchetta R, et al. Human hematopoietic cells and thymic epithelial cells induce tolerance via different mechanisms in the SCID-hu mouse thymus[J]. J Exp Med,1992, 175(4): 1033-1043.
[74] Schols D, Vandekerckhove B, Jones D, et al. IL-2 reverses human T cell unresponsiveness induced by thymic epithelium in SCID-hu mice[J]. J Immunol,1994, 152(5): 2198-2206.
[75] Tereb DA, Kirkiles-Smith NC, Kim RW, et al. Human T cells infiltrate and injure pig coronary artery grafts with activated but not quiescent endothelium in immunodeficient mouse hosts[J]. Transplantation,2001, 71(11): 1622-1630.
[76] Nikolic B, Gardner JP, Scadden DT, et al. Normal development in porcine thymus grafts and specific tolerance of human T cells to porcine donor MHC[J]. J Immunol,1999, 162(6): 3402-3407.
[77] Lan P, Wang L, Diouf B, et al. Induction of human T-cell tolerance to porcine xenoantigens through mixed hematopoietic chimerism[J]. Blood,2004, 103(10): 3964-3969.
[78] Lechler RI, Garden OA, Turka LA. The complementary roles of deletion and regulation in transplantation tolerance[J]. Nat Rev Immunol,2003, 3(2): 147-158.
[79] Hudson WA, Li Q, Le C, et al. Xenotransplantation of human lymphoid malignancies is optimized in mice with multiple immunologic defects[J]. Leukemia,1998, 12(12): 2029-2033.
[80] O’Reilly MS, Holmgren L, Chen C, et al. Angiostatin induces and sustains dormancy of human primary tumors in mice[J]. Nat Med,1996, 2(6): 689-692.
[81] Siegler U, Kalberer CP, Nowbakht P, et al. Activated natural killer cells from patients with acute myeloid leukemia are cytotoxic against autologous leukemic blasts in NOD/SCID mice[J]. Leukemia,2005, 19(12): 2215-2222.
[82] Flavell DJ, Warnes SL, Bryson CJ, et al. The anti-CD20 antibody rituximab augments the immunospecific therapeutic effectiveness of an anti-CD19 immunotoxin directed against human B-cell lymphoma[J]. Br J Haematol,2006, 134(2): 157-170.
[83] Trieu Y, Wen XY, Skinnider BF, et al. Soluble interleukin-13 Rα2 decoy receptor inhibits Hodgkin’s lymphoma growth in vitro and in vivo[J]. Cancer Res,2004, 64(9): 3271-3275.
[84] Watanabe M, Dewan MZ, Okamura T, et al. A novel NF-κB inhibitor DHMEQ selectively targets constitutive NF-κB activity and induces apoptosis of multiple myeloma cells in vitro and in vivo[J]. Int J Cancer,2005, 114(1): 32-38.
Researchprogressofhumanizedmousemodelsinimmunesystem
LIAN Jing-yao1,3, DING Miao-hui2, QIN Guo-hui1, ZHANG yi1, WANG Chun-yao1,3*
(1.The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China; 2.Department of Clinical Medicine, Zhengzhou University, Zhengzhou 450052; 3.College of Life Science, Zhengzhou University, Zhengzhou 450052))
Animal model is an animal material with human mimic performance established in biomedical scientific research. It can be used as experimental basis for studies of experimental hypothesis and clinical hypothesis. It can shorten the research time and observe the whole process of disease occurrence, development or prevention and treatment.Human biomedical research is largely limited by the biological complexity. In order to overcome this limitation, based on the immunosuppressive characteristics of a severely immunodeficient (SCID) or recombinant activated gene (Ragnull) in mice, humanized mouse models of human diseases can be established and have been widely used to study the underlying principles of human immunobiology and complex pathological mechanisms of human diseases. This approach has become one of the important ways to promote the development of medical sciences, with practicality and foresight. In this paper, the application and research progress of humanized mouse models are reviewed.
Humanized mouse models; Human diseases
R-33
A
1671-7856(2017) 10-0113-07
10.3969.j.issn.1671-7856. 2017.10.022
2017-04-16
連晶瑤(1990-)女,碩士生,研究方向:腫瘤免疫。E-mail: jingyao725@163.com
王純耀(1962-)男,研究方向:實驗動物相關研究。E-mail: chunyao@zzu.edu.cn