翟恩滋
摘 要:目前,新材料已經朝著復合化發展,而先進復合材料則作為航空航天結構的一種基本材料得到了推廣應用。其獨具優勢的特點不但包括較佳的耐高溫與耐疲勞特性,還包括較高的比強度與比模量,并且在大面積整體成型方面都具有比較便利的突出優勢,在飛機的材料應用上,不斷地獲得更高的重視。筆者將針對發展前景極佳的先進復合材料在航天航空領域的運用進行分析與探討。
關鍵詞:新材料 復合化 航空飛機 優勢
中圖分類號:V257 文獻標識碼:A 文章編號:1674-098X(2016)10(c)-0004-02
與鋁合金結構、鋼結構材料等傳統材料相比,先進性復合材料在綜合性能上更具優勢,其用量成為了代表著航空航天先進性的一個標志,占據著重要的地位。我國若要在競爭激烈的世界市場中站穩腳跟并且不斷向前發展,就要對先進性復合材料這一被全球強國重視的核心技術進行深入研究與重點發展。
1 先進復合材料的基本定義
先進復合材料,簡稱ACM,即是在進行主承力結構與次承力結構等加工過程中,可以運用的剛度性能以及強度性能≥鋁合金等傳統材料的一種復合材料,不但在質量的輕度上占據優勢,其比強度、比模量都更加高,還具有抗腐蝕、耐高溫與低溫、減震隔音及隔熱的良好性能,并且具有較佳的延展性,如今被大量地推廣應用在建筑行業、機械制造行業、醫學行業以及航空航天行業等領域中[1]。
2 先進復合材料的特點
作為當今時代的主導材料,復合材料有著以下一些特點:首先是可設計性與各向異性,根據構件的使用要求與環境條件,可以在設計環節進行合理的組分材料選擇、材料匹配,并且通過界面控制盡可能地滿足預期要求,達到工程結構所需性能的標準要求。傳統材料的運用上常見的材料冗余問題也可以很好地避免,實現材料結構的效能最大化。其次,復合材料的構件和材料一起形成,提高了結構的整體性能,無需過多的零部件,實現了加工周期的縮短與成本的減少。然后,復合材料在其復合效應下形成新性能,并不存在單一材料或幾種材料簡單混合的性能缺陷問題。
再者,復合材料能產生很多功能,比如吸波和透波、防熱和導電、透析和阻燃等等一系列功能,在結合其他先進技術的基礎上,形成一種新復合材料,比如納米復合材料、生物復合材料和智能復合材料等。最后,需要注意的是,在復合材料的成形過程中,其組份材料會發生物理變化與化學變化,使得復合材料構件性能在很大程度上依賴其復合工藝,難以準確地對工藝參數進行適當的控制,以至于性能具有較大的分散性。
3 先進復合材料在航空航天領域的應用
3.1 先進復合材料在無人機領域的應用
現代戰爭理念的改變,使無人機倍受青睞。無人機除在情報、監視、偵察等信息化作戰中的特殊作用外,還能在突防、核戰、化學和生物武器戰爭中發揮有人軍機無法替代的作用。無人機的發展方向是飛行更高、更遠、更長,隱身性能更好,制造更加簡便快捷,成本更低等,其中關鍵技術之一就是大量采用復合材料,超輕超大復合材料結構技術是提高其續航能力、生存能力、可靠性和有效載荷能力的關鍵。
3.2 先進復合材料在民航客機的應用
復合材料在民機結構上的應用近年來取得較大進展。復合材料的優點不僅僅是質輕,而且給設計帶來創新,通過合理設計,還可提供諸如抗疲勞、抗振、耐腐蝕、耐久性和吸/透波等其他傳統材料無法實現的優異功能特性,增加未來發展的潛力和空間。尤其與鋁合金等傳統材料相比,復合材料可明顯減少使用維護要求,降低壽命周期成本,特別是當飛機進入老齡化階段后差別更明顯。同時,大部分復合材料飛機構件可以整體成型,大幅度減少零件數目和緊固件數目,從而減小結構質量,降低連接和裝配成本,并有效降低總成本。
3.3 先進復合材料在航空器領域的應用
功能材料在航天領域的應用更為廣泛,其中最重要的是返回式航天器的表面熱防護功能材料。中國材料研究學會學者唐見茂研究指出,航天飛行器(導彈、火箭、飛船、航天飛機等)以高超聲速往返大氣層時,在氣動加熱下,其表面溫度高達4 000 ℃~8 000 ℃;固體和液體火箭發動機工作時,燃燒室產生的高速氣流沖刷噴管,燒蝕最苛刻的喉襯部位溫度瞬間可超過3 000 ℃。
4 結語
通過以上的研究可以發現,隨著航空航天技術的飛速發展,對材料的要求也越來越高。一個國家新材料的研制與應用水平在很大程度上體現了其國防和科研技術水平,因此許多國家都把新型材料的研制與應用放在科研工作的首要地位。新型航空航天器的先進性標志之一是結構的先進性,而先進復合材料是實現結構先進性的重要基礎和先導技術。我國將成為世界上先進復合材料的最大用戶,筆者認為,我國應該針對國外技術封鎖與國內技術儲備不足的國情,不斷地自主創新,努力探索原材料、設計問題,運用理論、低成本技術以及政策支持等一系列的解決方法,不斷提高航空航天器的結構先進性,不斷加強對先進復合材料先導技術的研究與發展。
參考文獻
[1] 唐見茂.航空航天復合材料發展現狀及前景[J].航天器環境工程,2013,30(4):352-359.
[2] 樊建中,石力開.顆粒增強鋁基復合材料研究與應用發展[J].宇航材料工藝,2012(1):1-7.